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1 INTRODUCTION

One of the main research topics in proof theory is the proposal of suitable frameworks for logi-
cal systems. Determining which properties should be taken into account for calling a framework
suitable depends on the intended application. For example, simple frameworks are easy to under-
stand and handle; hence, this can be a desirable characteristic. Another highly desirable property
is analyticity. Analytic calculi consist solely of rules that compose the formulae to be proved in a
stepwise manner. As a result, derivations in an analytic calculus possess the subformula property:
Every formula that appears (anywhere) in the derivation must be a subformula of the formulae to
be proved. This is a powerful restriction on the form of the proofs and can be exploited to prove
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7:2 B. Lellmann and E. Pimentel

important meta-logical properties of the formalised logics such as consistency, decidability, and
interpolation. Also, a framework is often required to be amenable for smooth extensions to avoid
the necessity of a fresh start every time new axioms are added to the base logic.

Perhaps the best-known formalism for proposing proof systems is Gentzen’s sequent calcu-

lus [18, 19]. Due to its simplicity, sequent calculus appears as an ideal tool for proving meta-logical
properties. However, it is neither expressive enough for constructing analytic calculi for many
logics of interest nor scalable to capture large classes of logics in a uniform and systematic way.

In the case of modal logics, the limitation of the sequent framework is glaring. Undoubtedly,
there are sequent calculi for a number of modal logics exhibiting many good properties (such
as analyticity),1 which can be used in complexity-optimal decision procedures. However, their
construction often seems ad-hoc; they are usually not modular, in the sense that the addition of a
single property usually implies a reworking of the whole system to obtain cut elimination; and they
mostly lack properties such as separate left and right introduction rules for the modalities, which
are relevant from the point of view of proof-theoretic semantics and facilitate closer connections
to natural deduction systems.

These problems are often connected to the fact that the modal rules in such calculi usually
introduce more than one connective at a time. For example, in the standard presentation of the
rule

Γ ⇒ A
Γ′,�Γ ⇒ �A,Δ k

for modal logic K [10], the context Γ contains an arbitrary finite number of formulae, each of
which is prefixed with a box in the conclusion. Thus, if the formulae in Γ really are considered
to form part of the context, then this context is not kept intact when passing over to the premiss.
Moreover, the context �Γ in the conclusion places a severe restriction on the side formulae, in that
only modalised formulae can appear. Hence, the rule is not local in the sense that it does not only
decompose the principal formula �A. Alternatively, the k rule can also be seen as an infinite set of
rules {

B1, . . . ,Bn ⇒ A

Γ′,�B1, . . . ,�Bn ⇒ �A,Δ
kn | n ≥ 0

}
,

each with a fixed number of principal formulae. While from this point of view the rules kn could
be considered local, because they do not place any restriction on the side formulae in Γ′,Δ, they
explicitly introduce boxed formulae on both sides of the sequent arrow and hence explicitly dis-
card the distinction between left and right rules for the modal connective. Thus, both of these
perspectives are somewhat dissatisfying. For a more detailed discussion see, e.g., Reference [69].

One way of solving this problem is to consider extensions of the sequent framework that are
expressive enough for capturing these modalities using separate left and right introduction rules.
This is possible, e.g., in the frameworks of labelled sequents [17, 54, 65, 68] or in that of nested

sequents or tree-hypersequents [6, 7, 31, 62, 66]. In the labelled sequent framework, the trick is ac-
complished by explicitly mentioning the Kripke-style relational semantics of normal modal logics
in the sequents. In the nested or tree-hypersequent framework in contrast, intuitively, a single
sequent is replaced with a tree of sequents, where successors of a sequent are interpreted under
a modality. The modal rules of these calculi govern the transfer of (modal) formulae between the
different sequents, and it can be shown that it is sufficient to transfer only one formula at a time.
However, the price to pay for this added expressivity is that the obvious proof search procedure is
of suboptimal complexity, since it constructs potentially exponentially large nested sequents [6].

1Analyticity in sequent calculus systems is often guaranteed by proving cut elimination.
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Modularisation of Sequent Calculi for Normal and Non-normal Modalities 7:3

In this work, we reconcile the added superior expressiveness and modularity of nested sequents
over ordinary sequents with the computational behaviour of the standard sequent framework
by proposing the concept of block form derivations for linear nested sequents. Linear nested se-
quents [37] (short: LNS) is a restricted form of nested sequents where the tree-structure is re-
stricted to that of a line. In LNS, a list of standard sequents is separated by the nesting operator

//, with the head of the list interpreted in the usual way as an implication and the tail interpreted
(recursively) under a modal operator. The logical rules then act on the elements of the list, possi-
bly moving formulae from one element to another. This finer way of representing systems enables
both locality and modularity by decomposing standard sequent rules into smaller components. For
example, the modal rule k in the linear nested setting is decomposed into the two rules

S{Γ ⇒ Δ// Σ,A⇒ Π}
S{Γ,�A⇒ Δ// Σ ⇒ Π}

�L
G// Γ ⇒ Δ// ⇒ A

G// Γ ⇒ Δ,�A
�R .

Note that different connectives are introduced one at a time by different rules not depending on
the formulae in the context, and this entails locality. Moreover, decomposing the sequent rules
enables modularity, since now extensions of, e.g., the modal system K are obtained by adding the
respective (local) modal rules.

However, locality has a collateral side effect: more choices on the application of rules. This
may cause an explosion in the proof space. To obtain a better control of proofs, we propose a
proof strategy based on blocks of applications of modal rules. The result is a notion of normal
derivations in the linear nested setting, which directly correspond to derivations in the standard
sequent setting.

Since we are interested in the connections to the standard sequent framework, we concentrate
on logics that have a standard sequent calculus. Examples include normal modal logic K and exten-
sions of it, in particular the family of simply dependent multimodal logics [14], as well as several
non-normal modal logics, i.e., standard extensions of classical modal logic [10]. Notably, we obtain
the first nested sequent calculi for the logics of the modal tesseract (see Figure 12). A prototype
implementation of a modular theorem prover using the linear nested sequent calculi is available
at https://logic.at/staff/lellmann/lnsprover/.

Finally, while more expressive formalisms such as LNS enable calculi for a broader class of logics,
the greater bureaucracy makes it harder to prove meta-logical properties, such as analyticity itself.
Since a specific logic gives rise to specific sets of rules in different calculi, it is important to de-
termine whether there is a general methodology for determining/analysing such meta-level prop-
erties. This is the role of logical frameworks in proof theory, where proof systems are adequately
embedded into a meta-level formal system so that object-level properties can be uniformly proven.
Since logical frameworks often come with automated procedures, the meta-level machinery can be
used for proving properties of the embedded systems automatically. In Reference [49] bipoles and
the focusing proof strategy [2] in linear logic [21] were used to specify sequent systems. By inter-
preting object-level inference rules as meta-level bipoles, focusing forces a one-to-one correspon-
dence between the application of rules and the derivation of formulae. In this work, we show that
this bipole/focusing approach can be extended to linear nested systems. Such specification allows
for the proposal of a general theorem prover (POULE available at http://subsell.logic.at/nestLL/),
parametric in the theory, profiting from the modularity of the specified systems.

It should be noted that some preliminary results on linear nested systems for various modal
systems were presented in Reference [40]. In the present article, we significantly extend these
results, give many more examples, and refine several technical details. The new contributions with
respect to Reference [40] are (1) generalisation of the results on simply dependent bimodal logics
to a large family of logics in Section 3.1; (2) introduction of modular linear nested sequent calculi
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7:4 B. Lellmann and E. Pimentel

for several logics; in particular, we propose the first local systems for non-normal modal logics
of the modal tesseract in Section 4; (3) definition of a notion of normal forms for linear nested
sequents, via the concept of modal block forms; this allows for a modular way of translating modal
sequents into linear nested sequent systems; (4) automatic generation of labelled systems for all
the logics in the modal tesseract; and, finally, (5) discussion on some other possible approaches for
focusing in modal systems, especially the ones proposed in Reference [8].

The rest of the article is organized as follows. In Section 2, we introduce the concept of linear
nested sequents (LNS). In Section 3, we show that the linear nested sequent framework is a good
formalism for a large class of modal systems, showing non-trivial extensions of multimodal K as
well as a large class of non-normal modal logics. Section 4 also presents local systems for non-
normal logics, but by modifying the structural rules of the system, instead of their logical rules.
In both sections, we make use of auxiliary structural operators. Since locality often entails less
efficient systems, in Section 5, we propose a notion of “normal proofs” in LNS derivations, hence
showing how to reduce the proof space and consequently optimize proof search. Since modal
connectives presented in this work are uniquely defined by the modal rules, we can specify such
rules as bipoles. We show the specification process in Section 6, by first proposing labelled sequent
versions for LNS systems and then showing how to to generate bipole clauses in linear logic that
adequately correspond to LNS modal rules. Finally, in Section 7, we conclude by pointing out some
future work.

In the remainder of this article, we assume familiarity with some basic notions of modal logic.
See, e.g., References [5, 10, 33] for an introduction.

2 LINEAR NESTED SEQUENT SYSTEMS

As an intermediate between the efficiency of the ordinary sequent framework and the expressive-
ness of the nested sequent framework [6, 7, 31, 62, 66], we consider calculi in the linear nested se-

quent framework [37]. This is essentially a reformulation of Masini’s 2-sequents [43] in the nested
sequent framework, where the tree structure of nested sequents is restricted to that of a line. The
benefit is that this framework exhibits the structure essential to obtain modular calculi, i.e., the
nesting of sequents, while retaining a very close connection to the ordinary sequent framework
and offering advantages in terms of efficiency. A similar approach was followed with the G-CKn

sequents for constructive modal logic of Reference [46] which, moreover, also add some form of
focusing to the linear structure. The superior expressiveness of the linear nested sequent compared
to the ordinary sequent framework is witnessed, e.g., by analytic calculi for temporal logics [29,
30] or intermediate logic LC [34], for which logics no analytic ordinary sequent calculi seem to
exist.

In the following, we consider a sequent to be a pair Γ ⇒ Δ of multisets of formulae and adopt
the standard conventions and notations for formulae, multisets, and proof systems (see, e.g., Ref-
erence [67]). Note that the sequents are two sided, even though the underlying propositional logic
for all the considered logics is classical. The benefit of this formulation over one-sided sequents
in the style of Reference [6] is that it avoids the introduction of dual modal operators. A linear
nested sequent then is simply a finite list of sequents. As noted in Reference [37], this data struc-
ture matches exactly that of a history in a backward proof search in an ordinary sequent calculus,
a fact we will heavily use in what follows.

Definition 2.1. The set LNS of linear nested sequents is given recursively by:

(1) if Γ ⇒ Δ is a sequent then Γ ⇒ Δ ∈ LNS
(2) if Γ ⇒ Δ is a sequent and G ∈ LNS then Γ ⇒ Δ//G ∈ LNS.
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We will write S{Γ ⇒ Δ} for denoting a context G//Γ ⇒ Δ//H where each of G,H is a linear
nested sequent or empty (omitting the//symbol in the latter case). We call each sequent in a linear
nested sequent a component and slightly abuse notation, abbreviating “linear nested sequent” to
LNS. The standard interpretation for linear nested sequents for modal logic K is given by:

ι� (Γ ⇒ Δ) :=
∧

Γ →
∨

Δ

ι� (Γ ⇒ Δ//G) :=
∧

Γ →
∨

Δ ∨ �ι� (G).

As usual, we take a conjunction and disjunction over an empty multiset to be� and⊥, respectively.

Thus, the nesting operator// of linear nested sequents is interpreted as a structural connective
for the modal box on the right-hand side of a sequent. Note that this is essentially the standard
interpretation of the brackets [.] of nested sequents using the two-sided sequents of Reference [7]
instead of the single-sided formulation of Reference [6]. Since we only consider linear nested se-
quents, we use// instead of iterated brackets to increase readability.

Example 2.2. Consider the logic K.

(1) The formula interpretation of the linear nested sequent ⇒ A//A⇒ is � → A ∨ �(A→
⊥) which is equivalent to A ∨ �¬A.

(2) The formula interpretation of the linear nested sequent �A⇒ // ⇒ // ⇒ A is �A→ ⊥∨
�(� → ⊥ ∨ �(� → A)) which is equivalent to �A→ ��A.

Remark 1. It is worth noting that while the structure of a linear nested sequent as a list of ordi-
nary sequents is the same as that of a hypersequent (see, e.g., Reference [4]), there is an important
difference between the two frameworks. In virtually all hypersequent calculi the formula interpre-
tation of a hypersequent is given by some form of disjunction; e.g., in the context of modal log-
ics the standard formula interpretation of the hypersequent Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2 | Γ3 ⇒ Δ3 would
be given by �(

∧
Γ1 →

∨
Δ1) ∨ �(

∧
Γ2 →

∨
Δ2) ∨ �(

∧
Γ3 →

∨
Δ3). In particular, every compo-

nent of the hypersequent is interpreted uniformly under exactly one application of �. In contrast,
the formula interpretation of the linear nested sequent Γ1 ⇒ Δ1//Γ2 ⇒ Δ2//Γ3 ⇒ Δ3 according to
the interpretation ι� from above is given by

∧
Γ1 →

∨
Δ1 ∨ � (

∧
Γ2 →

∨
Δ2 ∨ � (

∧
Γ3 →

∨
Δ3)).

Crucially, every component is interpreted under a number of modal operators that depends on
its position in the linear nested sequent. So the formula interpretations of the hypersequents
⇒ A | A⇒ and �A⇒ | ⇒ | ⇒ A corresponding to the linear nested sequents of Ex. 2.2 would
be given by the formulae �(� → A) ∨ �(A→ ⊥) and �(�A→ ⊥) ∨ �(� → ⊥) ∨ �(� → A), re-
spectively, which are equivalent to the formulae �A ∨ �¬A and �¬�A ∨ �⊥ ∨ �A, respectively.
Clearly, these interpretations are rather different from the ones in the linear nested sequent frame-
work. Accordingly, virtually all hypersequent calculi contain a rule like the external exchange rule

that permits a reordering of the components. However, under the linear nested sequent formula
interpretation and for the logics considered here this rule would not be sound. In line with this
observation, linear nested sequent calculi have also been considered as hypersequent calculi with-
out the external exchange rule under the name of non-commutative hypersequents, e.g., in Ref-
erences [29, 30], in a more semantically focused version in Reference [59], and in their tableaux
version as path-hypertableaux in Reference [11]. A more detailed investigation on the connection
between linear nested sequents and hypersequents is contained in Reference [37].

In this work, we consider only modal logics based on classical propositional logic, and we take
the system LNSG (Figure 1) as our base calculus. The linear nested sequent versions of the standard
(internal) structural rules are given in Figure 2.
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7:6 B. Lellmann and E. Pimentel

Fig. 1. System LNSG for classical propositional logic. In the init rule, p is atomic.

Fig. 2. The structural rules of contraction and weakening.

Fig. 3. The modal rules of the linear nested sequent calculus LNSK for K.

Definition 2.3. For a system C of linear nested sequent rules, we define a derivation to be a finite
directed tree where each node is labelled with a linear nested sequent in such a way that the linear
nested sequent associated to each node is obtained from the linear nested sequents associated to
its immediate successors by an application of one of the rules from C. In particular, each leaf of a
derivation is labelled with the conclusion of an instance of a zero-premiss rule, i.e., one of the rules
init,⊥L,�R . The label of the root of a derivation is also called the conclusion of that derivation, and
we say that a linear nested sequent G is derivable in the system C, in symbols 
C G, if there is a
derivation in C with conclusion G. The depth of a derivation is the length of the longest branch
in the underlying directed tree plus one. In the following, we will denote by LNSL a linear nested
sequent system for a logicL obtained by adding a certain set of rules for the modal operators to the
system LNSG. By LNSLConW, we denote the extension of the system LNSL with the structural
rules of contraction and weakening from Figure 2, where we abbreviate CL,CR to Con and WL,WR

to W.

Observe that LNSG is the linear nested version of the well known system G3cp from Refer-
ence [67] plus explicit rules for negation. The reason for considering the structural rules explicitly
is that, while in the logical systems considered in Section 3.2 contraction and weakening are ad-
missible (see Lemmas 3.18 and 3.22), some of the systems in Sections 3.1 and 4 are based on sequent
calculi that include explicit contraction and weakening. As a side remark, it is worth noticing that
the approach presented here could be easily adapted to having LKF [41] as the base logical system,
since such a decision would not alter the proof theory developed for the modal connectives.

Figure 3 presents the modal rules for the linear nested sequent calculus LNSK for K, essentially
a linear version of the standard nested sequent calculus from References [6, 62]. Thus, the calculus
LNSK contains the rules of LNSG together with the rules of Figure 3.

Conceptually, the main point is that the sequent rule k is split into the two rules �L and �R ,
which permit to simulate the sequent rule treating one formula at a time. While this is one of the
main features of nested sequent calculi and deep inference in general [25], being able to separate
the left/right behaviour of the modal connectives is the key to modularity for nested and linear
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Modularisation of Sequent Calculi for Normal and Non-normal Modalities 7:7

nested sequent calculi [37, 66]. It is worth noting that the same phenomenon was also previously
observed in the dual setting of prefixed tableaux in Reference [44]. There, the prefixed tableaux
versions of a number of standard nested sequent rules under the correspondence given in Ref-
erence [15] were constructed by decomposing a large jump along the accessibility relation “into
many “leaner” steps” dealing with only one formula each (ibid., p. 329). In addition to the decom-
position of ordinary sequent/tableaux rules in these works, here we, moreover, restrict the tree
structure of the nested sequents/prefixed tableaux to that of a line.

Completeness of LNSK w.r.t. modal logic K is shown by simulating a sequent derivation bottom-
up in the last two components of the linear nested sequents, marking applications of modal rules
by the nesting//and simulating the k-rule by a block of �R and �L rules [37]. Hence, an application
of k on a branch with history captured by the LNS G is simulated by:

Γ ⇒ A
Γ′,�Γ ⇒ �A,Δ k

.... G
�

G//Γ′ ⇒ Δ//Γ ⇒ A

G//Γ′,�Γ ⇒ Δ//⇒ A
�L

G//Γ′,�Γ ⇒ �A,Δ
�R

,

where the double line indicates multiple rule applications. Observe that this method relies on the
view of linear nested sequents as histories in proof search, where intuitively the modal rules mark
a transition or jump to a new state in a corresponding Kripke model, compare, e.g., Reference [22]
for a discussion in the dual framework of tableaux systems. It also simulates the propositional se-
quent rules in the rightmost component of the linear nested sequents. However, while the principal
formulae of the sequent rule can now be handled separately, the modal rules in the LNS system
do not need to occur in a block corresponding to one application of the sequent rule anymore. In
fact, one way of deriving the instance �(p → q) → (�p → �q) of the normality axiom for modal
logic K is as follows:

�p ⇒ //q ⇒ q
init

⇒ //p ⇒ p,q
init

�p ⇒ // ⇒ p,q
�L

�p ⇒ //p → q ⇒ q
→L

�(p → q),�p ⇒ //⇒ q
�L

�(p → q),�p ⇒ �q
�R

⇒ �(p → q) → (�p → �q)
→R .

Note that the propositional rule →L is applied between two modal rules. Hence there are many
derivations in LNSK that are not the result of simulating a derivation of the sequent calculus for K.
Thus, while the linear nested sequent calculus LNSK has conceptual advantages over the standard
sequent calculus for K, there are many more possible derivations with the same conclusion, when
compared to the sequent calculus. In Section 6, we will consider how to restrict proof search to a
smaller class of derivations, while retaining the conceptual advantages of the framework.

3 LINEAR NESTED SEQUENT SYSTEMS AND MODALITY

In Reference [37], the method of granulising sequent rules into linear nested sequent rules was
applied to some basic modal logics and to the multi-succedent calculus for intuitionistic logic. In
the following, we will considerably extend these results and show that the linear nested sequent
framework is a good formalism for a large class of modal systems. We first concentrate on non-
trivial extensions of multimodal K (the so-called simply dependent multimodal logics) and then
we show how to modularly extend the LNS approach also for handling non-normal modal logics.
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7:8 B. Lellmann and E. Pimentel

Fig. 4. Some modal axioms and rule nec. Modal logic K contains the propositional tautologies, modus ponens,
K and nec.

3.1 Simply Dependent Multimodal Logics

As a first example, we consider multimodal logics with a simple interaction between the modali-
ties, called simply dependent multimodal logics [14]. The language for these logics contains indexed
modalities �i for indices i from an index set N ⊆ N of natural numbers. In a Hilbert-style presen-
tation of these logics, the axioms are given by extensions of the axioms of modal logic K for every
modality �i together with interaction axioms of the form �iA→ �jA. A simple example of such a
logic is the simply dependent bimodal logic KT ⊕⊆ S4 from [14], whose language contains the two
modalities �1 and �2. Its Hilbert-style axiomatisation is given by the axioms and rules of classical
propositional logic together with the axioms and rules of modal logic KT for the modality �1, i.e.,
axioms K and T and the rule nec, the S4 axioms for the modality �2, i.e., axioms K, T, 4 and rule
nec, and the single interaction axiom �2A→ �1A. As usual, the rules of modus ponens and nec
can be applied to any previously derived theorem. Standard modal logics such as K or extensions
also can be seen as the trivial case of simply dependent multimodal logics where the index set N
is a singleton. Other examples include multimodal logics with a justified knowledge or “any fool
knows” modality from References [3, 45], or even substructural logics with subexponentials [13].
Here and in the following, we will identify a logic with its set of theorems and write A ∈ L if the
formula A is a theorem of logic L, i.e., derivable in the Hilbert-style system for L.

A general framework to describe simply dependent multimodal logics was given in Reference [1,
Section 4]. There, such a logic is given essentially by a triple (N ,�, F ), where N is a finite set of
natural numbers, (N ,�) is a partial order (i.e., transitive, reflexive, and antisymmetric), and F is a
mapping from N to a set L of logics.

In the present work, we will take L to be the set of extensions of modal logic K with axioms
from the set {D, T, 4} (see Figure 4). The logic described by (N ,�, F ) then has modalities�i for every
i ∈ N , with axioms for the modality i given by the logic F (i ) and interaction axioms �jA→ �iA
for every i, j ∈ N with i � j. We write L(N ,�,F ) for the logic described by (N ,�, F ).

Example 3.1. The simply dependent bimodal logic KT ⊕⊆ S4 is given by the description (N ,�, F )
with N = {1, 2}, and F (1) = KT, F (2) = S4, where � is given by 1 � 1, 1 � 2, 2 � 2.

The following definition extends the concept of frames to simply dependent multimodal logic.
The notions of valuations, model, and truth in a world of the model are defined as usual (see, e.g.,
References [5, 10]). As usual, we also identify a logic with the set of its theorems and writeL1 ⊆ L2

if every theorem of L1 is also a theorem of L2.

Definition 3.2. Let (N ,�, F ) be a description for a simply dependent multimodal logic. A (N ,
�, F )-frame is a tuple (W , (Ri )i ∈N ) consisting of a setW of worlds and an accessibility relation Ri

for every index i ∈ N , such that for all i, j ∈ N :

• If KD ⊆ F (i ), then Ri is serial.
• If KT ⊆ F (i ), then Ri is reflexive.
• If K4 ⊆ F (i ), then Ri is transitive.
• If i � j, then Ri ⊆ R j .

Since here we only consider simply dependent multimodal logics where the different compo-
nent logics are extensions of K with axioms from {D, T, 4}, and since the interaction axioms are of a
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Fig. 5. The modal sequent rules for the simply dependent multimodal logic given by the transitive-closed
description (N ,�, F ).

particularly simple shape, standard results, e.g., from Sahlqvist theory [5, Theorem 4.42] immedi-
ately yield soundness and completeness:

Theorem 3.3. The modal logic given by the description (N ,�, F ) is the logic of the class of (N ,
�, F )-frames, i.e., a formula is a theorem of the logic L(N ,�,F ) iff it is valid in all (N ,�, F )-frames.

By standard modal reasoning, we immediately obtain the following lemma stating upward prop-
agation of the modal axioms D and T.

Lemma 3.4. Let (N ,�, F ) be a description of a simply dependent multimodal logic L. Then for

every i ∈ N :

• If KD ⊆ F (i ), then for every j ∈ N with i � j, ¬(�jA ∧ �j¬A) is also a theorem of L.

• If KT ⊆ F (i ), then for every j ∈ N with i � j, �jA→ A is also a theorem of L.

Proof. By closing the axioms under the interaction axioms �jA→ �iA for i � j. Alternatively,
this can be seen from the semantical characterisation. �

Hence, we may assume, without loss of generality, that for any description (N ,�, F ) and any
i ∈ N , if KD ⊆ F (i ) (or KT ⊆ F (i )), then for every j ∈ N with i � j we have KD ⊆ F (j ) (respectively,
KT ⊆ F (j )). As a more economic notation, we also write ↑(i ) for the upset of the index i , i.e., the set
{j ∈ N : i � j}. Furthermore, in light of the comments above, we extend this notation to the sets
↑Ax(i ) := {j ∈ N : i � j, KAx ⊆ F (j )} and ↑¬Ax(i ) := {j ∈ N : i � j, KAx � F (j )}, where Ax is any of
the axioms D, T, 4. Thus, e.g., the set ↑¬4(i ) is the set of indices j with i � j such that K4 � F (j ),
i.e., the logic F (j ) does not derive the transitivity axiom 4.

The next step is to obtain cut-free sequent calculi for logics of this family. To obtain cut-free
completeness, i.e., completeness without the cut rule, we also need the set of transitive logics to
be upward closed. Formally:

Definition 3.5. A description (N ,�, F ) is transitive-closed if for every i, j ∈ N with i � j, if K4 ⊆
F (i ) then K4 ⊆ F (j ).

Using the method of cut elimination by saturation for sequent rules with restrictions on the con-
text, as developed in References [36, 39], it is then reasonably straightforward to construct cut-free
sequent calculi for simply dependent multimodal logics given by a transitive-closed description.
Since the actual construction of the sequent rules is not central to this article, we will omit the
details. The resulting modal rules and rule sets are given in Figure 5.

Definition 3.6. The restriction of the propositional calculus LNSG from Figure 1 to sequents is
denoted by G. If (N ,�, F ) is a description for a simply dependent multimodal logic, then G(N ,�,F )

is the sequent calculus extending the propositional calculus G with the modal rules R (N ,�,F ) ac-
cording to Figure 5.
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7:10 B. Lellmann and E. Pimentel

The intuition behind the rules perhaps is best obtained by considering an example:

Example 3.7. Continuing our Ex. 3.1, in the case of the logic KT ⊕⊆ S4 we have KD ⊆ KT ⊆ F (i )
for i = 1, 2 and K4 ⊆ F (2) but K4 � F (1). Hence, we have ↑(1) = {1, 2},↑(2) = {2} and furthermore
↑4(1) = {2},↑¬4(1) = {1} as well as ↑4(2) = {2},↑¬4(2) = ∅. Thus the sequent calculus GKT⊕⊆S4 for
this logic contains the following modal rules, obtained as specific instances of the rules given in
Figure 5:

�2Γ2, Σ2, Σ1 ⇒ A
Ω,�2Γ2,�2Σ2,�1Σ1 ⇒ �1A,Ξ

k1
�2Γ2, Σ2 ⇒ A

Ω,�2Γ2,�2Σ2 ⇒ �2A,Ξ
k2

�2Γ2, Σ2, Σ1 ⇒
Ω,�2Γ2,�2Σ2,�1Σ1 ⇒ Θ

d1
�2Γ2, Σ2 ⇒

Ω,�2Γ2,�2Σ2 ⇒ Θ
d2

Ω, Σ1 ⇒ Θ
Ω,�1Σ1 ⇒ Θ

t1
Ω, Σ2 ⇒ Θ

Ω,�2Σ2 ⇒ Θ
t2.

Note that this rule set could still be simplified in two ways. First, we observe that the rules d1, d2

are derivable using rules t1, t2 and weakening, and hence could be omitted from the rule set. For
the sake of a uniform presentation, we decided to keep them. Further, the rules ti could be re-
stricted to the more traditional version with only a single principal formula. We chose the current
formulation, since this is the form of the rules that is obtained directly from the construction and
facilitates a more uniform cut elimination proof.

Remark 2. The previous example also serves to illustrate the issues with modularity in the se-
quent framework: Suppose we wanted to obtain a cut-free sequent system for the logic KT ⊕⊆ KT
instead of the logic KT ⊕⊆ S4, i.e., we only drop the axiom �2A→ �2�2A from the Hilbert-style
system. Then to obtain the calculus GKT⊕⊆KT from the calculus GKT⊕⊆S4 above we would need to
drop the context formulae �2Γ2 from each of the rules k1, k2, d1, d2. This is no accident: in general,
adding or deleting one axiom from the Hilbert-style presentation of a logic requires heavy mod-
ifications of the corresponding sequent calculi, which need to take all rules of that calculus into
account.

While soundness and completeness of the calculi G(N ,�,F )ConW follow directly from the con-
struction, for later reference and the reader not familiar with the general construction, we state
them explicitly and briefly sketch the proofs.

Theorem 3.8. Let (N ,�, F ) be a transitive-closed description of a simply dependent multimodal

logic. Then the sequent calculus G(N ,�,F )ConW is sound with respect to this logic, i.e., for every

formula A we have that A ∈ L(N ,�,F ) if 
G(N ,�,F )ConW ⇒ A.

Proof. We use the fact that the logic given by the description is also characterised by frames
(W , (Ri )i ∈N ), where for i ∈ N the accessibility relation Ri satisfies the properties stipulated by the
logic F (i ) (i.e., is serial if KD ⊆ F (i ), reflexive if KT ⊆ F (i ) and transitive if K4 ⊆ F (i )), and where for
every i, j ∈ N with i � j we have Ri ⊆ R j . Then it is easy to show that all the modal rules preserve
validity by showing that if the negation of the conclusion is satisfiable in such a frame, then so is
the premiss. Since the zero-premiss rules are valid, i.e., the negation of their formula interpretation
is not satisfiable in any frame, from this we obtain the soundness statement by induction on the
depth of the derivation. As an example, we fix a description (N ,�, F ) and consider the following
application of the rule di for an index i ∈ N such that F (i ) is serial.

{�j Γj , Σj : j ∈ ↑4(i )}, {Σj : j ∈ ↑¬4(i )} ⇒
Ω, {�j Γj ,�j Σj : j ∈ ↑4(i )}, {�j Σj : j ∈ ↑¬4(i )} ⇒ Ξ

di .

ACM Transactions on Computational Logic, Vol. 20, No. 2, Article 7. Publication date: February 2019.



Modularisation of Sequent Calculi for Normal and Non-normal Modalities 7:11

If the negation of the conclusion of this rule is satisfiable in a (N ,�, F )-modelM = (W , (Ri )i ∈N ,σ ),
then we have a world w ∈W such that

M,w �
∧

Ω ∧
∧

j ∈↑4 (i )

(∧
�j Γj ∧

∧
�j Σj

)
∧
∧

j ∈↑¬4 (i )

∧
�j Σj ∧ ¬

∨
Ξ. (1)

Since F (i ) is serial, there is a worldv ∈W withwRiv , and since i � j impliesRi ⊆ R j for all i, j ∈ N ,
for thisv we also havewR jv for every j with i � j. Hence using (1) and transitivity of the relations
R j for j with K4 ⊆ F (j ), we obtain

M,v �
∧

j ∈↑4 (i )

(∧
�j Γj ∧

∧
Σj

)
∧
∧

j ∈↑¬4 (i )

∧
Σj .

Hence the negation of the interpretation of the premiss of this rule application is satisfied in v .
The reasoning for the remaining rules is similar. �

Theorem 3.9. Let (N ,�, F ) be a transitive-closed description of a simply dependent multimodal

logic. Then the sequent calculus G(N ,�,F )ConW is (cut-free) complete with respect to this logic, i.e.,

for every formula A we have that A ∈ L(N ,�,F ) only if 
G(N ,�,F )ConW ⇒ A.

Proof. As usual, completeness of the system without a cut rule is shown by first showing that
every axiom and rule of the Hilbert-style system for the logic L(N ,�,F ) can be simulated in the

system G(N ,�,F ) together with the multicut rule, i.e., the following rule, where n,m ≥ 1 and Ak is
an abbreviation for the multiset A, . . . ,A containing exactly k copies of the formula A,

Γ ⇒ Δ,An Am , Σ⇒ Π
Γ, Σ⇒ Δ,Π

Mcut.

We call the formula A in this application of the multicut rule the cut formula. Deriving all the
axioms for L(N ,�,F ) in the system G(N ,�,F )ConW is straightforward: The axioms for the logics
F (i ) are derived as in the monomodal case, and the interaction axioms for i � j are obtained by a
single application of the rule ki . As usual, the rule of modus ponens is simulated by applications
of the cut rule.

In the second step, we show in a rather standard way that the multicut rule can be eliminated
from derivations in the system G(N ,�,F )ConW (this also follows directly from checking that the
system G(N ,�,F )ConW satisfies the general criteria for cut elimination in References [36, 39]). As
usual, the proof is by double induction on the complexity of the cut formula, i.e., the number of
symbols in the cut formula, and the sum of the depths of the derivations of the two premisses
of the application of the multicut rule. Applications of the multicut rule are then pushed upward
into the derivations of the premisses of that application, until in both of the latter at least one
occurrence of the cut formula is introduced by the last applied rule, at which point the complexity
of the cut formula is reduced. Since the reasoning for the different cases is rather standard, here
we only consider two exemplary cases. See, e.g., Reference [67, Section 4.1.9] for the reasoning in
the propositional cases.

As a first example, consider the multicut below, with applications of rules based on a description
such that i � j,k and � � i,m,n with KD ⊆ F (�), K4 ⊆ F (j ), F (m), but with K4 not contained in
the other logics.

�j Γj , Σj , Σk , Σi ⇒ A

Ω,�j Γj ,�j Σj ,�k Σk ,�i Σi ⇒ �iA,Ξ,�iA
n−1

ki
�m Γm , Σm ,A

s , Σi , Σn ⇒
ϒ,�iA

t−s ,�m Γm ,�m Σm ,�iA
s ,�i Σi ,�n Σn ⇒ Π

d�

Ω,�j Γj ,�j Σj ,�k Σk , ϒ,�i Σi ,�m Γm ,�m Σm ,�i Σi ,�n Σn ⇒ Ξ,Π
Mcut.
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As usual, the multicut is replaced with a multicut on the formula of lower complexityA as follows:

�j Γj , Σj , Σk , Σi ⇒ A �m Γm , Σm ,A
s , Σi , Σn ⇒

�j Γj , Σj , Σk , Σi ,�m Γm , Σm , Σi , Σn ⇒ Mcut

Ω, ϒ,�j Γj ,�j Σj ,�k Σk ,�i Σi ,�m Γm ,�m Σm ,�i Σi ,�n Σn ⇒ Ξ,Π
d� .

Crucially, since the relation � is transitive, we know that � � j,k as well, which renders the ap-
plication of the rule d� at the bottom permissible.

As a second example, consider the multicut with cut formula �iA below, based on a description
(N ,�, F ) with k � i � j, such that K4 ⊆ F (i ), F (j ), and KD ⊆ F (k ),

�j Γj , Σj ⇒ A

Ω,�j Γj ,�j Σj ⇒ �iA,Ξ,�iA
n−1

ki

�iA
�−s ,�i Γi ,A

s , Σi , Σk ⇒
ϒ,�iA

�−s ,�i Γi ,�iA
s ,�i Σi ,�k Σk ⇒ Π

dk

Ω,�j Γj ,�j Σj , ϒ,�i Γi ,�i Σi ,�k Σk ⇒ Ξ,Π
Mcut.

This multicut is replaced by two multicuts, an application of dk and contractions as follows:

�j Γj , Σj ⇒ A

�j Γj , Σj ⇒ A

�j Γj ,�j Σj ⇒ �iA
ki �iA

�−s ,�i Γi ,A
s , Σi , Σk ⇒

�j Γj ,�j Σj ,�i Γi ,A
s , Σi , Σk ⇒

Mcut

�j Γj , Σj ,�j Γj ,�j Σj ,�i Γi , Σi , Σk ⇒ Mcut

Ω, ϒ,�j Γj ,�j Σj ,�j Γj ,�j Σj ,�i Γi ,�i Σi ,�k Σk ⇒ Ξ,Π
dk

Ω, ϒ,�j Γj ,�j Σj ,�i Γi ,�i Σi ,�k Σk ⇒ Ξ,Π
Con.

The upper multicut is then eliminated using the (inner) induction hypothesis on the sum of the
depths of the derivations of its premisses, the lower one is eliminated using the (outer) induction
hypothesis on the complexity of the cut formula. Note that for this transformation to work it is
crucial that the logic F (j ) is also transitive, i.e., that the description (N ,�, F ) is transitive closed,
since, otherwise, we would not be able to apply the rule dk with boxed context formulae �j Γj and
�j Σj . A similar situation occurs if the application of dk is replaced with an application of kk with
an additional principal formula on the right.

The general cases of the above examples as well as the remaining cases are treated similarly. �

To convert the resulting sequent systems into LNS systems, we need to modify the linear nested
setting to account for all the different non-invertible right rules. For this, given a description (N ,
�, F ), we introduce nesting operators //i for every i ∈ N , and change the interpretation so that
they are interpreted by the corresponding modality:

ι (Γ ⇒ Δ) :=
∧

Γ →
∨

Δ

ι (Γ ⇒ Δ//iH ) :=
∧

Γ →
∨

Δ ∨ �i ι (H ).

The modal sequent rules of G(N ,�,F ) are then decomposed into the modal linear nested sequent
rules shown in Figure 6. The propositional rules are those of LNSG (Figure 1). We call the resulting
calculus LNS(N ,�,F ) . The intuition behind the rules is that an application of the sequent rule ki

is decomposed into an application of the rule �i R followed by applications of �i j L to unpack the
principal formulae of the sequent rule, and applications of the rule 4i j to move the boxed context
formulae into the next component.

Example 3.10. The linear nested sequent calculus for the logic KT ⊕⊆ S4 contains the LNS rules
�11L,�21L,�22L,�1R ,�2R , d11, d21, d22, t1, t2, 421, and 422.

Remark 3. The previous example illustrates the added modularity of the linear nested sequent
approach: if, as in Rem. 2, we wanted to obtain a linear nested sequent calculus for the logic KT ⊕⊆
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Fig. 6. The linear nested sequent rules for the simply dependent multimodal logic given by the description
(N ,�, F ).

KT from the calculus for KT ⊕⊆ S4 above, we would only need to delete the rules 421 and 422 from
the rule set, keeping all other rules the same. This is in stark contrast to the modification of almost
all modal rules required in the ordinary sequent setting. Note however, that we have modularity,
and indeed completeness, only for transitive-closed descriptions. I.e., we would not be able to
obtain a calculus for the logic S4 ⊕⊆ KT, since it is not given by a transitive-closed description.

Theorem 3.11. If (N ,�, F ) is a transitive-closed description of a simply dependent multimodal

logic, then LNS(N ,�,F )ConW is sound and complete for the logic given by (N ,�, F ), i.e., for every

formula A we have that A ∈ L(N ,�,F ) if and only if 
LNS(N ,�,F )ConW ⇒ A.

Proof. For soundness, i.e., the “if” statement, we show that whenever the negation of the in-
terpretation of the conclusion of a rule from LNS(N ,�,F )ConW is satisfiable in a (N ,�, F )-frame,
then so is the negation of the interpretation of at least one of its premisses. This makes essential
use of the fact that in such frames we have Ri ⊆ R j whenever i � j. For completeness, i.e., the
“only if” statement, we again simulate the sequent rules in the last components, i.e., we trans-
late a sequent derivation in G(N ,�,F )ConW bottom-up into a linear nested sequent derivation in
LNS(N ,�,F ) , simulating propositional sequent rules by their linear nested sequent counterparts,
and modal sequent rules by a number of applications of the corresponding linear nested sequent
rules. For example, an application of the modal sequent rule di with history (i.e., trace to the con-
clusion of the sequent derivation) captured by the linear nested sequent G is simulated as follows
(assuming that k ∈ ↑¬4(i )):

{�j Γj , Σj : j ∈ ↑4(i )}, {Σj : j ∈ ↑¬4(i )},A⇒
Ω, {�j Γj ,�j Σj : j ∈ ↑4(i )}, {�j Σj : j ∈ ↑¬4(i )},�kA⇒ Ξ

di

.... G

�

G//Ω,⇒ Ξ//i {�j Γj , Σj : j ∈ ↑4(i )}, {Σj : j ∈ ↑4(i )}, {Σj : j ∈ ↑¬4(i )},A⇒
G//Ω, {�j Γj : j ∈ ↑4(i )},⇒ Ξ//i {Σj : j ∈ ↑4(i )}, {Σj : j ∈ ↑¬4(i )},A⇒

4ji

G//Ω, {�j Γj ,�j Σj : j ∈ ↑4(i )} ⇒ Ξ//i {Σj : j ∈ ↑¬4(i )},A⇒
�ji L

G//Ω, {�j Γj ,�j Σj : j ∈ ↑4(i )}, {�j Σj : j ∈ ↑¬4(i )} ⇒ Ξ//iA⇒
�ji L

G//Ω, {�j Γj ,�j Σj : j ∈ ↑4(i )}, {�j Σj : j ∈ ↑¬4(i )},�kA⇒ Ξ
dki .

The remaining modal rules are simulated in a similar way. �
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Note that the proof of completeness via simulation of the sequent calculus in the last component
actually shows a slightly stronger statement, i.e., completeness for a variant of the calculus where
the rules are restricted so they only manipulate the last components. More precisely:

Definition 3.12. An application of a linear nested sequent rule is end-active if the rightmost com-
ponents of the premisses are active and the only active components (in premiss and conclusion)
are the two rightmost ones. The end-active variant of a LNS calculus is the calculus with the rules
restricted to end-active applications.

Example 3.13. The application of the rule ∧L below left is end-active, the one below right is not,
since the rightmost component is not active,

G//Γ,A,B ⇒ Δ

G//Γ,A ∧ B ⇒ Δ
∧L

G//Γ,A,B ⇒ Δ//Σ⇒ Π

G//Γ,A ∧ B ⇒ Δ//Σ⇒ Π
∧L .

Applications of the modal rules in the LNS calculi for non-normal modal logics considered in this
article (see next section) are always end-active. An application of the modal rule

S{Γ ⇒ Δ//Σ,A⇒ Π}
S{Γ,�A⇒ Δ//Σ⇒ Π}

�L

is end-active only if Σ⇒ Π is the rightmost component.

Corollary 3.14. If (N ,�, F ) is a transitive-closed description of a simply dependent multimodal

logic, then the end-active variant of LNS(N ,�,F )ConW is sound and complete for the logic given by

(N ,�, F ), i.e., for every formula A we have A ∈ L(N ,�,F ) if and only if ⇒ A is derivable in the

end-active variant of LNS(N ,�,F )ConW.

Proof. Soundness, i.e., the “if” statement, follows immediately from soundness for the full cal-
culus. For completeness, i.e., the “only if” statement, observe that the sequent rules are simulated
in the last component, i.e., by end-active applications of the linear nested sequent rules. �

The fact that we can restrict the linear nested calculi to their end-active variants will be exploited
in Section 5 for reducing the search space in proof search.

The example of simply dependent multimodal logics shows another conceptual advantage of
LNS calculi over standard sequent calculi: for more involved sequent calculi such as the ones in
Figure 5 the decomposition of the sequent rules into their different components tends to make the
corresponding LNS calculi (Figure 6) a lot more readable. Of course, the previous theorem also
shows that the obvious adaption of this calculus to the full nested sequent setting of References [6,
62] is sound and cut-free complete for the corresponding logic.

3.2 Non-normal Modal Logics

The same ideas also yield LNS calculi for some non-normal modal logics, i.e., modal logics that are
not extensions of modal logic K (see Reference [10] for an introduction). The calculi themselves are
of independent interest, since, to the best of our knowledge, nested sequent calculi for the logics
below have not been considered before in the literature. The most basic non-normal logic, classical

modal logic E, is given Hilbert-style by extending the axioms and rules for classical propositional
logic with only the congruence rule (E) for the � connective

A→ B B → A
�A→ �B (E),
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Fig. 7. Sequent rules and calculi for some non-normal modal logics.

which allows exchanging logically equivalent formulae under the modality. Some of the better
known extensions of this logic are formulated by the addition of axioms from the list below left.

M �(A ∧ B) → (�A ∧ �B)

C (�A ∧ �B) → �(A ∧ B)

N ��

Together, these extensions form what could be termed the classical cube (above right). Note that
the extension of E with all the axioms M,C,N is normal modal logic K. Figure 7 shows the modal
rules of the standard cut-free sequent calculi for these logics, where in addition weakening is
embedded in the conclusion. Extensions of E are written by concatenating the names of the axioms,
and in presence of the monotonicity axiom M, sometimes the initial E is dropped, e.g., the logic
EMC = MC is the extension of E with axioms M and C. Its sequent calculus GMC is given by
the standard propositional rules of Gr (see Definition 3.6) together with the rule (E) as well as
the rules (Mn) for n ≥ 1. For all of the logics apart from EN and ECN these calculi were given
in Reference [35], the one for EN is considered in Reference [28], the remaining calculus is an
easy extension. It is not too difficult to show admissibility of weakening and contraction in these
calculi. However, since the calculi originally were considered in op. cit. for sequents based on sets
instead of multisets, and in preparation for later results, we mostly consider their extensions with
the structural rules, e.g., we consider GEMConW instead of GEM.

To construct linear nested calculi for these logics, again we would like to decompose the se-
quent rules from Figure 7 into their different components. However, there are two complications
compared to the case of normal modal logics: we need a mechanism for capturing the fact that,
e.g., in the rule (M) exactly one boxed formula is introduced on the left-hand side; and we need a
way of handling multiple premisses of rules such as (E) and (En). We solve the first problem by in-
troducing an auxiliary nesting operator //e to capture a state where a sequent rule has been partly

processed, i.e., where the simulation of the sequent rule is still unfinished. The intuition behind this
is that in this “partly processed” state, only other LNS rules continuing or eventually finishing the
simulation of the original sequent rule can be applied. In contrast, the intuition for the original
nesting // is that the simulation of a rule is finished. We restrict the occurrence of //e to the last
components.

To solve the problem of multiple premisses, we make the nesting operator //e binary, which
permits the storage of more information about the premisses. In particular, we can now store the
two “directions” of implications given, e.g., in the premisses of rule (E). Linear nested sequents for
classical non-normal modal logics are then given by

LNSe ::= Γ ⇒ Δ | Γ ⇒ Δ//e (Σ⇒ Π; Ω ⇒ Θ) | Γ ⇒ Δ//LNSe.
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Fig. 8. Linear nested sequent calculi for non-normal modal logics.

Figure 8 shows the modal rules for these logics. For a logic EA with A ⊆ {N,M,C} the calculus
LNSEA then contains the corresponding modal rules along with the propositional rules of LNSG

(Figure 1) with the restriction that they are not applied inside the nesting //e . To keep the presenta-
tion simple, we slightly abuse notation and write, e.g., M both for the axiom and the corresponding
rule.

Remark 4. At first sight the linear nested sequent rules of Figure 8 might look more complicated
than the ordinary sequent rules of Figure 7. Moreover, it could be argued that the latter systems
could be considered to be modular, since, e.g., to obtain a calculus for the logic MC from the logic
EC it would be sufficient to simply add the rules {(Mn ) : n ≥ 1} to the system for EC, so it might
not be clear immediately what we have gained by moving to the nested sequent setting. However,
it is worth noting that, for every extension of EC, the sequent systems of Figure 7 consist of an
infinite number of rules, where in particular every rule has a different number of principal formu-
lae. In contrast, the linear nested sequent systems of Figure 8 each consist of a finite number of
rules, where each rule has at most one principal formula. Moreover, each of the axioms N,M,C
corresponds to exactly one additional rule in the linear nested sequent setting. Both of these prop-
erties are philosophically highly relevant, e.g., from the point of view of proof-theoretic semantics.
For more details on this, see, e.g., the discussion in Reference [69, Sections 1.2 and 1.3].

Theorem 3.15 (Completeness). The linear nested sequent calculi of Figure 8 are complete w.r.t.

the corresponding logics, i.e., if A ∈ EA, then 
LNSEAConW ⇒ A.

Proof. Again the proof is via simulation of the sequent calculi. An application of the rule (En)
is simulated by the following derivation:

G//Γ ⇒ Δ//A1, . . . ,An ⇒ B G//Γ ⇒ Δ//B ⇒ An

G//Γ,�An ⇒ Δ//e (A1, . . . ,An−1 ⇒ B;B ⇒ )
�e

L

....
G//Γ,�A2, . . . ,�An ⇒ Δ//e (A1 ⇒ B;B ⇒ ) G//Γ,�A2, . . . ,�An ⇒ Δ//B ⇒ A1

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B ⇒ )
C

G//Γ,�A1, . . . ,�An ⇒ �B,Δ
�e

R
.

Here the vertical dots abbreviate successive applications of the rule C with right premisses
G//Γ,�Ai+1, . . . ,�An ⇒ Δ//B ⇒ Ai for 1 < i < n. The case of n = 1 gives the simulation of the
rule (E). The sequent rule N is simulated directly by the LNS rule N. In the monotone case the
simulations are essentially the same, but after creating the new nesting using the �e

R
rule (bottom-

up) we first apply the rule M to add⊥ and thus make all the premisses for the “backward direction,”
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i.e., the implications B ⇒ Ai , trivially derivable. The sequent rule (Mn) then is simulated by

G//Γ ⇒ Δ//A1, . . . ,An ⇒ B G//Γ ⇒ Δ//B,⊥ ⇒ An
⊥L

G//Γ,�An ⇒ Δ//e (A1, . . . ,An−1 ⇒ B;B,⊥ ⇒ )
�e

L

....
G//Γ,�A2, . . . ,�An ⇒ Δ//e (A1 ⇒ B;B,⊥ ⇒ ) G//Γ,�A2, . . . ,�An ⇒ Δ//B,⊥ ⇒

⊥L

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B,⊥ ⇒ )
C

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B ⇒ )
M

G//Γ,�A1, . . . ,�An ⇒ �B,Δ
�e

R
.

Again, the vertical dots abbreviate applications of the rule C, and the case of n = 1 gives the sim-
ulation of the rule (M). �

As in the case of simply dependent multimodal logics, the proof of completeness via simulation
of the sequent rules in the last component also shows completeness of the end-active variants of
the calculi.

Corollary 3.16. The end-active variants of the linear nested sequent calculi of Figure 8 are com-

plete w.r.t. the corresponding logics, i.e., if A ∈ EA, then ⇒ A is derivable in the end-active variant

of LNSEAConW.

For showing soundness of such calculi, we need a different method, though. This is due to the
fact that, unlike for normal modal logics, there is no clear formula interpretation for linear nested
sequents for non-normal modal logics. However, since the propositional rules cannot be applied
inside the auxiliary nesting //e , the modal rules can only occur in blocks that can be seen as a
macro-rule corresponding to a modal sequent rule. In addition, we will show by a permutation-
of-rules argument that it is possible to restrict the propositional rules to end-active applications
(see Definition 3.12). Soundness of the full calculus then follows from soundness of the end-active
variant, which is shown by translating derivations back into derivations in the corresponding
sequent calculus.

Similarly to the argument for levelled derivations in Reference [43, p. 241, Proposition 2], the
following Lemmata show that the propositional rules can be restricted to be end-active. The first
step is to show invertibility of the general forms of the propositional rules. Since all our calculi
include the contraction rule, we show this in a slightly more general form.

Definition 3.17. If Γ1 ⇒ Δ1// . . . //Γn ⇒ Δn is a linear nested sequent, then the level of the occur-
rences of formulae in Γi ,Δi is i .

In all the results stated in this section, we will assume that A ⊆ {N,M,C}.

Lemma 3.18 (Admissibility of Weakening). The weakening rules WL,WR are depth-preserving

admissible in LNSEA and LNSEACon, i.e., if there is a derivationD of S{Γ ⇒ Δ} with depth at most

n, then there are derivationsD1 andD2 of S{Γ,A⇒ Δ} and S{Γ ⇒ A,Δ} respectively with depth at

most n in the same system. Moreover, if the level of the active components of every rule application in

D is at least k , then the same holds for D1 and D2.

Proof. As usual by induction on the depth of the derivation: applications of weakening are
permuted upward over every rule until they are absorbed by the initial sequents. Since this does
not change the structure of the derivation and in particular does not introduce any new rule ap-
plications, the depth of the derivation and the minimal level of the active components of the rule
applications is preserved. �
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Lemma 3.19 (Multi-invertibility of the Propositional Rules). The non-end-active versions

of the propositional rules are m-invertible in LNSEACon, i.e., for every n ≥ 1 we have:

(1) If 
LNSEACon S{Γ, (¬A)n ⇒ Δ}, then also 
LNSEACon S{Γ ⇒ An+k ,Δ} for some k ≥ 0.

(2) If 
LNSEACon S{Γ ⇒ (¬A)n ,Δ}, then also 
LNSEACon S{Γ,An+k ⇒ Δ} for some k ≥ 0.

(3) If 
LNSEACon S{Γ, (A→ B)n ⇒ Δ}, then also 
LNSEACon S{Γ,Bn+k ⇒ Δ} and 
LNSEACon

S{Γ ⇒ An+�,Δ} for some k, � ≥ 0.

(4) If 
LNSEACon S{Γ ⇒ (A→ B)n ,Δ}, then also 
LNSEACon S{Γ,An+k ⇒ Bn+�,Δ} for some

k, � ≥ 0.

(5) If 
LNSEACon S{Γ, (A ∨ B)n ⇒ Δ}, then also 
LNSEACon S
{
Γ,An+k ⇒ Δ

}
and 
LNSEACon

S{Γ,Bn+� ⇒ Δ} for some k, � ≥ 0.

(6) If 
LNSEACon S{Γ ⇒ (A ∨ B)n ,Δ}, then also 
LNSEACon S{Γ ⇒ An+k ,Bn+�,Δ} for some

k, � ≥ 0.

(7) If 
LNSEACon S{Γ, (A ∧ B)n ⇒ Δ}, then also 
LNSEACon S{Γ,An+k ,Bn+� ⇒ Δ} for some

k, � ≥ 0.

(8) If 
LNSEACon S{Γ ⇒ (A ∧ B)n ,Δ}, then also 
LNSEACon S{Γ ⇒ An+k ,Δ} and 
LNSEACon

S{Γ ⇒ Bn+�,Δ} for some k, � ≥ 0.

Moreover, both the depth of the derivation and the minimal level of the active components of rule

applications are preserved.

Proof. By induction on the depth of the derivation, distinguishing cases according to the last
applied rule; e.g., for the rule →R we have the following: If S{Γ ⇒ (A→ B)n ,Δ} is an initial
sequent or the conclusion of one of the rules ⊥L or �R , then so is the linear nested sequent
S{Γ,An+k ⇒ Bn+�,Δ} for any k, � ≥ 0. If the last applied rule was not a contraction rule, then
we apply the induction hypothesis to its premiss(es), followed by the same rule; e.g., if the last
applied rule was the rule C, and the component containing (A→ B)n is the penultimate one, then
we have a derivation ending in

....
G//Γ′ ⇒ (A→ B)n ,Δ//e (Σ,C ⇒ Π; Ω ⇒ Θ)

....
G//Γ′ ⇒ (A→ B)n ,Δ//Ω ⇒ C,Θ

G//Γ′,�C ⇒ (A→ B)nΔ//e (Σ⇒ Π; Ω ⇒ Θ)
C
.

Using the induction hypothesis, for some i, j,k, � we obtain derivations of G//Γ′,An+i ⇒
Bn+j ,Δ//e (Σ,C ⇒ Π; Ω ⇒ Θ) and G//Γ′,An+k ⇒ Bn+�,Δ//Ω ⇒ C,Θ and admissibility of weak-

ening (Lemma 3.18) followed by an application of C yields the desired G//Γ′,�C,An+max{i,k } ⇒
Bn+max{j, � },Δ//e (Σ⇒ Π; Ω ⇒ Θ). Finally, if the last applied rule was the contraction rule, then we
simply apply the induction hypothesis to its premiss. For example, if the contracted formula is
A→ B and we have a derivation ending in

S
{
Γ ⇒ (A→ B)n+1,Δ

}

S{Γ ⇒ (A→ B)n ,Δ} CR
,

then we use the induction hypothesis to obtain S{Γ,An+1+k ⇒ Bn+1+�,Δ} for some k, � ≥ 0. �

Of course, settingn = 1 in the statement of the previous lemma and (possibly) applying a number
of contractions to the result recovers standard invertibility of the propositional rules, albeit not the
depth-preserving version.

Using this, we first obtain soundness of the full calculus with contraction with respect to the
end-active variant.
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Lemma 3.20. If a linear nested sequent Γ ⇒ Δ is derivable in LNSEACon, then it is derivable in

the end-active variant of LNSEACon.

Proof. Due to the nature of the modal rules it is clear that in a derivation only applications of
the propositional rules and contraction can violate the end-activeness condition. We then succes-
sively transform a derivation of Γ ⇒ Δ into an end-active derivation as follows. Take the bottom-
most block of modal rules such that there is an application of a propositional rule or contraction
above it with level of the active component smaller than the maximal level of the active compo-
nents in the modal block. Since the modal rules only apply to formulae in the last component,
all such applications of propositional rules introduce a propositional connective that in the con-
clusion of the modal block is not under a modality. Using multi-invertibility of the propositional
connectives (Lemma 3.19), we replace every such formula in the conclusion of the modal block by
its constituents, possibly with multiplicity more than one; e.g, if the conclusion of the modal block
has the form

....
G//Γ ⇒ A→ B,Δ//H //Σ⇒ Π//e ( ⇒ C;C ⇒ )

G//Γ ⇒ A→ B,Δ//H //Σ⇒ �C,Π
�e

R

with the formula A→ B introduced above the modal block, then, using m-invertibility, we obtain

.... D
G//Γ,A1+k ⇒ B1+�,Δ//H //Σ⇒ Π//e ( ⇒ C;C ⇒ )

G//Γ,A1+k ⇒ B1+�,Δ//H //Σ⇒ �C,Π .

Then we delete every application of the contraction rule with active component of level smaller
than the maximal level of the active components in the modal block from the derivation, possibly
using Lemma 3.18 to ensure that the contexts in two-premiss rules are the same. From the proof of
Lemma 3.19 it can be seen that afterward the minimal level of the active components in rule appli-
cations in the derivation up to the conclusion of the modal block is at least the maximal level of the
active components in the modal block itself. Finally, we use end-active applications of contraction
to remove unwanted duplicates followed by end-active applications of the propositional rules to
reintroduce the propositional connectives in the right place, i.e., when the component containing
the constituent formulae is the last one. Since the conclusion of the original derivation contained
only a single component, this is always possible. �

From this, we obtain soundness of the full calculus by first translating derivations into deriva-
tions in the end-active variant, then into derivations in the corresponding sequent calculus:

Theorem 3.21 (Soundness). If a sequent Γ ⇒ Δ is derivable in LNSEACon for A ⊆ {N,M,C},
then it is derivable in the corresponding sequent calculus GEACon. Hence if 
LNSEAConW ⇒ A, then

A ∈ EA.

Proof. From the previous lemma, we obtain that if a sequent Γ ⇒ Δ is derivable in LNSEACon,
then it is derivable in the end-active variant of LNSEACon. A derivation of the latter form then
is translated into a GEACon derivation, discarding everything apart from the last component of
the linear nested sequents, and translating blocks of modal rules into the corresponding modal
sequent rules; e.g., a block consisting of an application of �e

L
followed by n applications of C and

an application of �e
R

is translated into an application of the rule (En). In the monotone case, we
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use the fact that the rule M permutes down over the rule C, i.e., a modal block

G//Γ ⇒ Δ//A1, . . . ,An ⇒ B G//Γ,An ⇒ Δ//B,⊥ ⇒ An
⊥L

G//Γ,An ⇒ Δ//e (A1, . . . ,An−1 ⇒ B;B,⊥ ⇒ )
�e

L

....
G//Γ,�Ak+1, . . . ,�An ⇒ Δ//e (A1, . . . ,Ak ⇒ B;B,⊥ ⇒ )

G//Γ,�Ak+1, . . . ,�An ⇒ Δ//e (A1, . . . ,Ak ⇒ B;B ⇒ )
M

....
G//Γ,�A2, . . . ,�An ⇒ Δ//e (A1 ⇒ B;B ⇒ ) G//Γ,�A2, . . . ,�An ⇒ Δ//B ⇒ A1

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B ⇒ )
C

G//Γ,�A1, . . . ,�An ⇒ �B,Δ
�e

R

is first turned into the following block by permuting the rule M downward and closing the deriva-
tions of the superfluous premisses using the ⊥L rule:

G//Γ ⇒ Δ//A1, . . . ,An ⇒ B G//Γ,An ⇒ Δ//B,⊥ ⇒ An
⊥L

G//Γ,An ⇒ Δ//e (A1, . . . ,An−1 ⇒ B;B,⊥ ⇒ )
�e

L

....
G//Γ,�A2, . . . ,�An ⇒ Δ//e (A1 ⇒ B;B,⊥ ⇒ ) G//Γ,�A2, . . . ,�An ⇒ Δ//B,⊥⇒ A1

⊥L

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B,⊥ ⇒ )
C

G//Γ,�A1, . . . ,�An ⇒ Δ//e ( ⇒ B;B ⇒ )
M

G//Γ,�A1, . . . ,�An ⇒ �B,Δ
�e

R
.

The resulting modal block then is translated into an application of the rule (Mn) with premiss
A1, . . . ,An ⇒ B and conclusion Γ,�A1, . . . ,�An ⇒ �B,Δ. The propositional rules only work on
the last component, never inside the nesting //e and are translated easily by the corresponding
sequent rules.

Soundness of the system LNSEAConW then follows from this using admissibility of weakening
(Lemma 3.18) and soundness of the sequent system GEACon w.r.t. EA. �

Note that due to the following lemma for the logics of the non-normal cube, we could have
avoided the complications arising from including the contraction rules in the calculi. However, in
view of the calculi in later sections and the fact that the original sequent systems include contrac-
tion explicitly or implicitly in the structure of sequents as defined by sets instead of multisets we
chose the given more general method for proving soundness.

Lemma 3.22 (Admissibility of Contraction). Contraction is admissible in the calculus LNSEA ,

that is, if there is a derivation D of S{Γ,A,A⇒ Δ} (respectively, S{Γ ⇒ Δ,A,A}) in LNSEA , then

there is a derivation D′ of S{Γ,A⇒ Δ} (respectively, S{Γ ⇒ Δ,A}) in LNSEA .

Proof. The proof is for both statements simultaneously by double induction on the complexity
of the contracted formula and the depth of the derivation. In case the main connective of the
contracted formula is a propositional connective, we use invertibility of the propositional rules
(Lemma 3.19) followed by the (outer) induction hypothesis on the complexity of the contracted
formula. The cases where A is a modal formula and not principal in the last applied rule are dealt
with in the standard way by appealing to the (inner) induction hypothesis on the depth of the
derivation. If the contracted formula is a modal formula and principal in the last applied rule, then
we distinguish cases according to the last applied rule. Suppose, e.g., that S{Γ,�A,�A⇒ Δ} has a
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derivation of the shape

π1

G//Γ,�A⇒ Δ//e (Σ,A⇒ Π; Ω ⇒ Θ)
π2

G//Γ,�A⇒ Δ//Ω ⇒ A,Θ

G//Γ,�A,�A⇒ Δ//e (Σ⇒ Π; Ω ⇒ Θ)
C.

Note that the �A in the penultimate component of the conclusion of π2 will be necessarily weak-
ened, since no logical rules can act on it. In the derivation π1, either �A is never active, in which
case it can be weakened, or it is active via one of the rules C or �e

L
. Let us consider the first case:

π ′1
G//Γ ⇒ Δ//e (Σ,A,A⇒ Π; Ω ⇒ Θ)

π ′′1
G//Γ ⇒ Δ//Ω ⇒ A,Θ

G//Γ,�A⇒ Δ//e (Σ,A⇒ Π; Ω ⇒ Θ)
C.

Observe that the modal block in π ′1 will eventually end by producing leaves of the form G//Γ′ ⇒
Δ′//Σ′,A,A⇒ Π′ and Ω′ ⇒ Θ′. By induction hypothesis, for every derivation for a sequent of
the first form there is a derivation of G//Γ′ ⇒ Δ′//Σ′,A⇒ Π′. Hence, starting from such leaves
and applying the same sequence of rules as in the modal block of π ′1, we have a derivation π of
G//Γ ⇒ Δ//e (Σ,A⇒ Π; Ω ⇒ Θ). Thus

π
G//Γ ⇒ Δ//e (Σ,A⇒ Π; Ω ⇒ Θ)

π ′′1
G//Γ ⇒ Δ//Ω ⇒ A,Θ

G//Γ,�A⇒ Δ//e (Σ⇒ Π; Ω ⇒ Θ)
C.

The other cases are similar and simpler. �

It is worth noting that modular calculi for the logics in the non-normal cube were also given in
the framework of labelled sequents in References [12, 20, 53]. The calculi presented there are very
much semantically motivated. The systems in Reference [20] are based on a translation of non-
normal modal logics into normal modal logics. The complexity of the resulting semantic conditions
then is captured using systems of rules [52]. The calculi in Reference [53] and in Reference [12]
avoid this translation but introduce additional predicates in the meta-language to explicitly refer
to neighbourhoods.

4 STRUCTURAL VARIANTS AND THE MODAL TESSERACT

The systems for the non-normal logics introduced in the last section make use of different logical

rules, but sometimes it is preferable to change logics only by modifying the structural rules of
the system, i.e., the rules governing the behaviour of the structural connective//. In particular, for
sequent systems varying the structural rules instead of the logical rules often results in higher
modularity, since cut elimination proofs are usually less affected by additional structural rules.
This has also been called Došen’s Principle in Reference [69]. We will now apply this idea to obtain
modular calculi for a number of extensions of monotone modal logic M (see also Reference [26] for
a semantic treatment not only of these logics). To do so, we first simplify the calculus for monotone
modal logic. As the avid reader might have noticed, there is quite a lot of redundancy in this
calculus. In particular, after applying the rule M, the second premiss of the following applications
of C or �e

L
become trivially derivable. Hence, for the present purpose, we might as well omit these

premisses and the corresponding component of the nesting operator, replacing the binary operator
//e with the unary operator//m . Linear nested sequents for monotone modal logics then are given
by:

LNSm ::= Γ ⇒ Δ | Γ ⇒ Δ//m Σ⇒ Π | Γ ⇒ Δ//LNSm.
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Fig. 9. The structural variants of the linear nested systems for monotone modal logics.

Fig. 10. Sequent rules for extensions of monotonic logics. We slightly abuse notation and write the same
letters for axioms and the corresponding rules.

The rules�e
R

and�e
L

in the monotone setting then are simplified to the rules�m
R and�m

L of Figure 9,
which now only need to carry information about one direction of the premisses. The additional
rules for the axioms C and N (shown in the same figure) now are given in their structural variants,
permitting to switch from the “finished rule” marker//to the “unfinished rule” marker //m and back.
Obviously, adding both rules N and C collapses both nesting operators into one, and essentially
brings us to the linear nested sequent calculus for modal logic K from Figure 3, as should be the
case, since K is precisely the logic MNC. Finally, observe that applying rule C allows propositional
rules to be applied between modal phases.

The main benefit of capturing the axioms C and N by structural rules instead of logical rules
is that it is now possible to give calculi for further extensions in a uniform way, independent of
normality or non-normality of the base logic. The further axioms we are going to consider are
(using the terminology of Reference [26]):

P ¬�⊥ D ¬(�A ∧ �¬A) T �A→ A 4 �A→ ��A 5 �A ∨ �¬�A.
Note that we included both the two axioms P and D, which are usually taken to be two different
formulations of the axiom for seriality. This is due to the fact that in the non-normal setting the two
formulations are not equivalent: While P is derivable from D, the opposite does not hold in logics
not validating the axiom C. The reason for why we here only consider extensions of monotone
modal logic with these axioms instead of extensions of classical modal logic E is that obtaining cut-
free sequent calculi for many of these extensions seems to be problematic, see, e.g., Reference [28]
for more details.

Definition 4.1 (Sequent Calculi). The sequent rules for extensions of monotone modal logic with
axioms from {P,D, T, 4, 5} are given in Figure 10. Let A ⊆ {N,P,D, T, 4, 5}. The sequent system
GMA contains the standard propositional rules of G (see Definition 3.6) as well as the following
modal rules:

• {M} ∪ A
• D4 if {D, 4} ⊆ A
• D5 if {D, 5} ⊆ A.
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Fig. 11. Linear nested sequent rules for extensions of monotonic modal logics.

The sequent system GMCA contains the standard propositional rules together with the additional
rules

• {C} ∪ A
• CD if P ∈ A or D ∈ A
• C4 if 4 ∈ A
• CD4 if {P, 4} ⊆ A or {D, 4} ⊆ A
• K4 if {N, 4} ⊂ A
• K45 if {N, 4, 5} ⊆ A
• KD45 if {N,P, 4, 5} ⊆ A or {N,D, 4, 5} ⊆ A

Note that the modal sequent rules of Figure 10 do not absorb weakening into the conclusion.
Indeed, the weakening and contraction rules are not admissible in most of these calculi. While of
course the modal rules could be modified as to make the structural rules admissible, to stay closer
to the literature we consider the calculi with explicit structural rules. The additional sequent rules
stipulated in the above definition are required for cut elimination. In particular, this means that
modularity fails almost completely for these systems. Decomposing the rules yields the linear
nested sequent rules and rule sets LNSMA given in Figure 11. Note in particular that we do not
need to include additional rules at all, and hence the calculi are completely modular. As for normal
modal logics, extensions of M including the axiom 5 are not as well behaved as those without it.
We first consider logics not including 5. Most of the following results can be found in the literature,
see the proof for the exact references.

Proposition 4.2. ForA ⊆ {N,C,P,D, 4} the sequent calculus GMAConW is sound and complete

for the logic MA i.e., for every formula A we have A ∈ MA if and only if 
GMAConW ⇒ A.

Proof. For the extensions of normal modal logic K = MNC, see, e.g., Reference [69]. For the
logic MCT the result is shown in Reference [57], for the extensions of M with axioms from {N,C}
see Reference [35]. The result for the logics MP and MCP = MCD can be found in Reference [58].
The majority of the results for the non-normal logics are due to Reference [27], namely the cal-
culi for all extensions of M with axioms from {N,D, T, 4}. The remaining calculi for the logics
MP,MP4,MNP,MNP4,MC4,MCP4 = MCD4 and MT4 can be constructed using methods similar
to the ones in References [36, 39]. The cut elimination proof for these calculi essentially is an ex-
tension of the cut elimination proof given in Reference [27]. Since it is not central to the topic of
this article, we relegate it to Appendix A. �

The decomposition of the rules of these sequent calculi into the linear nested sequent rules
shown in Figure 11 then provides modular systems for every combination of C,N,P,D, T, 4.

Theorem 4.3 (Soundness and Completeness). Let A be a subset of {C,N,P,D, T, 4}. Then the

linear nested sequent calculus LNSMAConW is sound and complete for the logic MA, i.e., for every

formula A we have A ∈ MA if and only if 
LNSMAConW ⇒ A.
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Proof. We first show completeness by simulating sequent derivations in the last component.
Here we only show how to simulate the modal rules. First, the rules (Mn) for monotone logics
including the axiom C are simulated by

A1, . . . ,An ⇒ B
Γ,�A1, . . . ,�An ⇒ �B,Δ

(Mn) �

Γ ⇒ Δ//A1, . . . ,An ⇒ B

Γ,�An ⇒ Δ//mA1, . . . ,An−1 ⇒ B
�m

L

....
Γ,�A2, . . . ,�An ⇒ Δ//mA1 ⇒ B

Γ,�A2, . . . ,�An ⇒ Δ// A1 ⇒ B
C

Γ,�A1, . . . ,�An ⇒ Δ//m ⇒ B
�m

L

Γ,�A1, . . . ,�An ⇒ �B,Δ
�m

R ,

where the vertical dots abbreviate successive applications of the rules �m
L and C. The case for n = 1

gives the simulation of the rule M. The necessitation rule N is simulated by

⇒ B
Γ ⇒ �B,Δ N �

Γ ⇒ Δ// ⇒ B

Γ ⇒ Δ//m ⇒ B
N

Γ ⇒ �B,Δ �m
R .

The simulations of the rules from Figure 10 then are (omitting the general context G):

A⇒
�A⇒ P �

⇒ //A⇒
�A⇒ //m ⇒

�m
L

�A⇒ P

A,B ⇒
�A,�B ⇒ D �

⇒ //A,B ⇒
�A⇒ //mB ⇒

�m
L

�A,�B ⇒ D

Γ,A⇒ Δ
Γ,�A⇒ Δ

T �
⇒ //Γ,A⇒ Δ

�A⇒ //m Γ ⇒ Δ
�m

L

Γ,�A⇒ Δ
T

�A⇒ B
�A⇒ �B 4 �

⇒ //�A⇒ B

�A⇒ //m ⇒ B
4

�A⇒ �B �m
R

�A,B ⇒
�A,�B ⇒ D4 �

Γ ⇒ Δ//�A,B ⇒
Γ,�B ⇒ Δ//mB ⇒ 4

Γ,�A,�B ⇒ Δ
D.

In the presence of C, we use the rule C to move additional formulae on the left-hand side; e.g., for
the system containing the axioms C,D and 4, we would have:

�B,A1,A2 ⇒
�B,�A1,�A2 ⇒ CD4 �

⇒ //m�B,A1,A2 ⇒
�A2 ⇒ //m�B,A1 ⇒

�m
L

�A2 ⇒ //�B,A1 ⇒
C

�B,�A2 ⇒ //mA1 ⇒
4

�B,�A1,�A2 ⇒ D.

If the logic contains P but not D, then the application of the rule D above is replaced by an appli-
cation of P followed by applications of �m

L and C. The cases of the remaining rules C,CD,C4,K4
are analogous.

To show soundness, we first observe that applications of the propositional rules in the last com-
ponent can be permuted above blocks of applications between the rules C and �m

L , i.e., above
blocks of rule applications where the last nesting is//m. This is due to the fact that only modal rules
can be applied inside the nesting //m , no modal rule creates a new nesting after a//m nesting, and
every modal rule keeps all the formulae occurring under the nesting //m in the conclusion at the
same place. Hence, we may assume that in a derivation in LNSMA all the modal rules occur in
a block. Then, analogously to Lemma 3.20 of the previous section, and using the formulations of
Lemmas 3.18 and 3.19 for the present calculi (the proofs of which are completely analogous), we
convert the derivation into a derivation where all the applications of rules are end-active. Such a

ACM Transactions on Computational Logic, Vol. 20, No. 2, Article 7. Publication date: February 2019.



Modularisation of Sequent Calculi for Normal and Non-normal Modalities 7:25

Fig. 12. The modal tesseract.

derivation then is converted into a sequent derivation. In particular, every modal block then can
be translated into one or more modal rules in the sequent system: whenever we have a block

G//Γ ⇒ Δ//Σ⇒ Π

G//Γ, Σ′ ⇒ Δ,Π′

consisting only of modal rules, then the sequent rule

Σ⇒ Π
Γ, Σ′ ⇒ Δ,Π′

is derivable in the corresponding sequent system. The transformations are essentially the back-
ward directions of the transformations given above. �

Thus, we obtain modular nested sequent calculi for all the logics in what could be called the
modal tesseract (Figure 12), hence repairing the bridge between non-normal and normal modal
logics. Note that the modal tesseract includes one side of the standard (normal) modal cube, see,
e.g., Reference [6].

For logics including the axiom 5 the situation is a bit more complicated, since not all of these (in
particular K5 and S5) have cut-free sequent calculi. However, while in this case we do not obtain
full modularity, we still obtain calculi for a number of logics. The number of logics we need to
consider in this case is greatly reduced by the following simple observation.

Lemma 4.4. The axiom N is derivable in any extension of M including an axiom of the form �A1 ∨
· · · ∨ �An . In particular, the axiom N is derivable in M5.

Proof. Using the fact that Ai is equivalent to Ai ∧ � for every Ai and the monotonicity ax-
iom for the box operator, from �A1 ∨ · · · ∨ �An we obtain �� ∨ · · · ∨ ��, which is equivalent to
��. �

Hence the lattice of extensions of M5 with axioms from {N,C,P,D, T, 4} collapses to the 12 logics
shown in Figure 13 (the house of M5—not all corners of it are safe, i.e., cut-free in the sense of

ACM Transactions on Computational Logic, Vol. 20, No. 2, Article 7. Publication date: February 2019.



7:26 B. Lellmann and E. Pimentel

Fig. 13. The extensions of modal logic M5.

sequent calculi, though). In particular, the extensions of MC5 are the same as the extensions of
normal modal logic K5. Again, most of the following results are found in the literature (see the
proof for the exact references).

Proposition 4.5. Let L be one of the logics

{M5,MP5,M45,MP45,MD45,K45,KD45}.
Then GLConW is sound and complete for L, i.e., for every formula A we have A ∈ L if and only if


LNSL ⇒ A.

Proof. For the logics K45 and KD45 this was shown in Reference [64], but note that the calculi
for K45 and KD45 considered here are slight variations of the ones in op. cit. In particular, there
also the rule

�Γ, Σ⇒ �Δ
�Γ,�Σ⇒ �Δ

with non-empty Δ is included in the rule set for K45. This rule can be derived in the calculus consid-
ered here using the rule K45 together with a cut on the derivable sequent ��A⇒ �A. Equivalence
of the cut-free systems then follows from cut elimination for GK45. The latter follows from the
general criteria of Reference [36, Theorem 2.3.16], but is also given explicitly in Appendix A.

In the non-normal case, for the logics M5,M45 and MD45 the result can be found in Refer-
ence [27]. The result for the remaining two logics MP5 and MP45 follows similarly to the results
of Proposition 4.2 from the cut elimination proof in Appendix A. �

For all the other cases there are counterexamples to cut elimination. In particular, for the non-
normal logic MD5 this is given, e.g., by the formula �p → �¬�¬p. This formula is derivable using
the formula �p → ¬�¬p, which is propositionally equivalent to an instance of axiom D, and the
formula ¬�¬p → �¬�¬p, which is propositionally equivalent to an instance of axiom 5. However,
it is not cut-free derivable in GMD5ConW. Interestingly, this formula is not a theorem of MP5, and
hence not a counterexample to cut elimination for GMP5ConW.2

Theorem 4.6. Let L be one of the logics

{M5,MP5,M45,MP45,MD45,K45,KD45}.

2For the reader familiar with neighbourhood semantics [10, 26]: The MP5-model ( {a, b }, η, σ ) with η (a) = η (b ) =
{ {a }, {b }, {a, b } } and �p� = {a } witnesses satisfiability of the negation of this formula.
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Then LNSLConW is sound and complete for L, i.e., for every formula A we have A ∈ L if and only

if 
LNSLConW ⇒ A.

Proof. Analogous to the proof of Theorem 4.3. The missing transformations from sequent rules
into linear nested sequent derivations are

⇒ A,�B
⇒ �A,�B 5 �

⇒ // ⇒ A,�B
⇒ �B//m ⇒ A

5

⇒ �A,�B �m
R

A⇒ �B
�A⇒ �B D5 �

⇒//A⇒ �B
⇒ �B//mA⇒

5

�A⇒ �B D.

The rules K45 and KD45 are transformed similarly to the case of CD4.
The soundness proof is analogous to the one for the cases not involving the axiom 5. �

5 RECONCILING SEQUENTS WITH NESTED SEQUENTS

We have presented a modular way of proposing several different modal systems. The beauty in
this is that all systems share the same core, where modal rules can be plugged in and/or mixed
together. For that, we refined sequent rules, exposing their behaviour locally. The price to pay for
this modularity is, of course, efficiency, since there are more rules that could have been applied to
derive a given sequent. In particular, the propositional rules could be applied in any component,
giving rise to a great number of derivations that should be identified modulo bureaucracy. This
alone could be taken care of by simply restricting the calculi to their end-active variants, so that
the propositional rules are applied only in the last component. However, doing so would still leave
open the possibility of mixing propositional and modal rules, e.g., applying (bottom-up) a rule
�i R followed by a propositional rule in the last component, and then a rule �ji L . This as well is a
potential source of inefficiency when compared to the sequent framework, where we have blocks
of propositional rules alternating with single modal rules.

In this section, we will show how auxiliary nesting operators can be used to guarantee a notion
of normal form for LNS derivations that mimic the respective sequent ones, hence reducing the
proof search space and optimizing proof search.

Definition 5.1. A LNS derivation is in block form if, whenever a modal rule occurs directly above
a propositional rule, then that modal rule creates a new component.

In the following, we use block form as the normal form of LNS derivations. Considering first the
simply dependent normal multimodal logics of Section 3.1, in Figure 14 we present FLNS(N ,�,F ) ,
an end-active version for LNS(N ,�,F ) (Figure 6) where all derivations are necessarily in block form:

This is assured by an auxiliary nesting operator \\i for each i ∈ N . This operator behaves much in
the same way as the “unfinished rule marker” in the systems for non-normal modal logics. How-
ever, here we explicitly include the rule close, which intuitively marks a sequent rule as finished.

This implies that, modulo the order of application of �i j L and di j rules, there is a 1-1 correspon-
dence between derivations in the end-active variant of the LNS system FLNS(N ,�,F )ConW and in
the sequent system G(N ,�,F )ConW (see Figure 5). In this way, sequent rules can be seen as macro

rules of linear nested rules.
Since every FLNS(N ,�,F )ConW-derivation can be translated into a LNS(N ,�,F )ConW-derivation

by replacing the nesting\\i everywhere by//i and omitting every application of the rule close we
immediately obtain soundness of the system FLNS(N ,�,F )ConW. Completeness follows as men-
tioned above from permuting propositional and structural rules below modal rules in derivations
in the end-active variant of LNS(N ,�,F )ConW.

Observe that the normal modal logics presented in this article form a particular case of simply
dependent multimodal logics (with N being a singleton). Hence all derivations in the end-active
variant of the correspondent FLNS(N ,�,F )ConW system will be in block form.

ACM Transactions on Computational Logic, Vol. 20, No. 2, Article 7. Publication date: February 2019.



7:28 B. Lellmann and E. Pimentel

Fig. 14. Modal rules for FLNS(N ,�,F ) , where k, i, j are as in Figure 6. The propositional rules are the same as
in Figure 1, restricted to the last component.

Fig. 15. System FLNSMC.

Example 5.2. The block form derivation for the normality axiom is as follows:

· ⇒ ·//p ⇒ p,q
init · ⇒ ·//p,q ⇒ q

init

· ⇒ ·//p → q,p ⇒ q
→L

· ⇒ ·\\ p → q,p ⇒ q
close

�(p → q),�p ⇒ ·\\ · ⇒ q
�L

�(p → q),�p ⇒ �q
�R

⇒ �(p → q) → (�p → �q)
→R .

All the systems presented for non-normal modal logics in the previous sections are end-active
and in most systems the partial nesting operator already forces that all valid derivations are in
block form. The exception are the systems containing the C rule (Figure 9). In fact, this rule allows
a partial nesting to begin anywhere in the derivation, not only after an application of a modal rule.

An alternative set of rules for these systems is obtained by adding the nesting operator \\ (so
that the modal rules have two levels of partial processing), together with the close rule, that forces
the modal block to end. We illustrate this in Figure 15 for the system FLNSMC. Again, soundness
and completeness follow as above.

5.1 Block Forms versus Focused Derivations

In Reference [2], a notion of normal form for cut-free derivations in linear logic was introduced.
This normal form is given by a focused proof system organised around two “phases” of proof
construction: the negative phase for invertible inference rules and the positive phase for non-
necessarily-invertible inference rules. Due to invertibility, when searching for a derivation it is
always safe to apply, reading bottom-up, a rule for a negative formula, so these may be applied at
any time. However, rules for positive formulae may require a choice or restriction on the appli-
cation of rules. Hence, in the focusing discipline, negative formulae are decomposed eagerly until
only positive formulae are left, then one of them is non-deterministically chosen to be focused on.
Thus focused derivations alternate negative and positive phases.

Focused nested systems for modal logics were first considered in Reference [8], where a focused
variant for all modal logics of the classical S5 cube were proposed. This approach was extended to
the intuitionistic case in Reference [9].
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Since block form derivations entail a notion of normal forms in LNS by alternating modal and
propositional blocks, it is natural to ask if there is any relationship between focusing in nested
systems and modal blocks in linear nested systems.

In (plain) nested systems, the rule �R is invertible (negative), since it basically implements the
semantical description for the box operator, described by a forall connective (which has a negative
behaviour). However,�L is a non-invertible rule (positive), since its application should be preceded
by an instance of a �R rule.

However, on passing to linear nesting systems, the dualities of polarities for modal connectives
is lost. In fact, �L and �R rules are both non-invertible in LNSK: While the left rule can be applied
only after a right rule, for the right rule a boxed formula has to be chosen to be processed. Hence
there seems to be no natural way of polarising the modal connectives presented in this article.

Let us take a closer look at the sequent rule k

Γ ⇒ A
Γ′,�Γ ⇒ �A,Δ k

and its interpretations in nested and linear nested systems.
In the nested system proposed in Reference [8] all the existing right boxes can be processed

in parallel (and this is invertible) and then the left boxes can be transferred one by one to all
the nestings. A derivation then proceeds by running all the possible traces in parallel, and finish
whenever one or more of them succeed. Although considering the box left a positive connective
leads to a complete proof system, it has an inherited negative behaviour that is ignored when
adopting such polarisation. Also, in the sequent rule k, the box right should be chosen, which gives
it a positive behaviour, also not taken into account in the focused system proposed in Reference [8].

In contrast, this positive/negative behaviour of box left and right rules is present in LNSK. In
fact, while �R is not invertible, proposing a focused version of this rule would render the resulting
system incomplete. And, as mentioned before, the �L rule has the restriction that it can be applied
only after a �R rule is applied, hence it has a positive behaviour. But once the new component is
created by the �R rule, moving the left boxed formulae can be done in any order and this action is
invertible, hence negative.

Thus, although modal blocks do not correspond to focusing, it produces a normal form that
mimics the sequential behaviour and preserves the inherent positive/negative flavor of the box
modality. Focusing, on the other side, produces normal forms that do not correspond to sequent
derivations, hence the proof space is much bigger in (focused) nested systems than in (block form)
linear nested systems.

6 LABELLED LINE SEQUENT SYSTEMS AND BIPOLES

A logical framework is a meta-language used for the specification of deductive systems. Embedding
systems into frameworks allows for determining/analysing/proving meta-level properties of the
object level specified systems. And, since logical frameworks often come with automated proce-
dures, the meta-level machinery can often be used for proving properties of the embedded systems
automatically.

Restricting our attention to logical systems, since a specific logic gives rise to specific sets of
rules in different calculi, it is very important to: choose a suitable, general logical framework, able
to specify a representative class of systems/calculi; and determine whether there is a general and
adequate methodology for embedding deductive systems into the chosen logical framework, so
that object-level properties can be uniformly proven.

In this section, we will show that linear logic (LL) [21] is a general and adequate framework
for specifying a paramount subset of linear nested systems presented in this article. This is a
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fundamental result that opens the possibility of exploring meta-level properties for such logical
systems by extending similar results obtained for sequent systems [47–49, 56, 61].

One of the main advantages of the LNS calculi over the standard sequent calculi is that the modal
operators have separate left and right rules, and that the number of principal formulae in the modal
rules is bounded. While the better control on moving formulae on nested sequents facilitates the
suggestion of a general method for embedding LNS systems, the locality of the rules makes the
quest of proving adequacy of the encodings harder. In fact, determining adequate embedding maps
on linear nested sequents that smoothly extend existing ones on sequents is a non-trivial task, as
we will show next.

We start by reformulating the LNS structure in the language of labelled sequents [68], using a
restriction of the correspondence between nested sequents and labelled tree sequents in Refer-
ence [23]. We then show how to use such labelled systems to generate bipole clauses in linear
logic that adequately correspond to LNS modal rules.

6.1 Labelled Systems

Let SV a countable infinite set of state variables (denoted by x ,y, z, . . .), disjoint from the set of
propositional variables. A labelled formula has the form x : A where x ∈ SV and A is a formula.
If Γ = {A1, . . . ,An } is a multiset of formulae, then x : Γ denotes the multiset {x : A1, . . . ,x : An }
of labelled formulae. A (possibly empty) set of relation terms (i.e. terms of the form xRy, where
x ,y ∈ SV) is called a relation set. For a relation set R, the frame Fr (R ) defined by R is given by
( |R |,R ) where |R | = {x | xRy ∈ R or yRx ∈ R for some y ∈ SV}. We say that a relation set R is
treelike if the frame defined by R is a tree or R is empty. A treelike relation set R is called linelike

if each node in R has at most one child.

Definition 6.1. A labelled line sequent LLS is a labelled sequent R,X ⇒ Y , where

(1) R is linelike;
(2) if R = ∅, then X has the form x0 :A1, . . . ,x0 :An and Y has the form x0 :B1, . . . ,x0 :Bm for

some x0 ∈ SV;
(3) if R � ∅, then every state variable x that occurs in either X or Y also occurs in R.

A labelled line sequent calculus is a labelled sequent calculus whose initial sequents and inference
rules are constructed from LLS.

Observe that, in LLS, if xRy ∈ R, then uRy � R and xRv � R for any u,v ∈ SV such that u � x
and v � y.

Since linear nested sequents form a particular case of nested sequents, the algorithm given in
Reference [23] can be used for generating LLS from LNS, and vice versa. However, one has to
keep the linearity property invariant through inference rules. For example, the following labelled
sequent rule

R,xRy,X ⇒ Y ,y :A

R,X ,⇒ Y ,x :�A
�′R ,

where y is fresh, is not adequate w.r.t. the system LNSK, since there may exist z ∈ |R| such that
xRz ∈ R. That is, for labelled sequents in general, freshness alone is not enough for guaranteeing
unicity of x in R. And it does not seem to be trivial to assure this unicity by using logical rules
without side conditions. To avoid this problem, we slightly modify the framework by restricting
R to singletons, that is, R = {xRy} will record only the two last components, in this case labelled
by x and y, and by adding a base case R = {x0Rx1} for x0,x1 different state variables when there
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Fig. 16. The end-active version of LLSG. In rule init, p is atomic.

are no nested components. The rule for introducing �R then is

xRy,X ⇒ Y ,y :A

zRx ,X ,⇒ Y ,x :�A
�R

with y fresh. Note that this solution corresponds to recording the history of the proof search up
to the last two steps similar to what is outlined in Reference [60]; hence, we are adopting an end-
active version of LLS.

Definition 6.2. An end-active LLS is a singleton relation set R together with a sequent X ⇒ Y
of labelled formulae, written R,X ⇒ Y . The rules of an end-active LLS calculus are constructed
from end-active labelled line sequents such that the active formulae in a premiss xRy,X ⇒ Y are
labelled with y and the labels of all active formulae in the conclusion are in its relation set.

From now on, we will use the end-active version of the propositional rules (see Figure 16).
We will now show how to automatically generate LLS from LNS. This is possible, since the key

property of end-active LNS calculi is that rules can only move formulae “forward,” that is, either
an active formula produces other formulae in the same component or in the next one.

Definition 6.3. For a state variable x , define the mapping TLx from LNS to end-active LLS as
follows:

TLx1 (Γ1 ⇒ Δ1) = x0Rx1,x1 : Γ1 ⇒ x1 :Δ1

TLxn
(Γ1 ⇒ Δ1// . . .//Γn ⇒ Δn ) = xn−1Rxn ,x1 : Γ1, . . . ,xn : Γn ⇒ x1 :Δ1, . . . ,xn :Δn n > 0

with all state variables pairwise distinct.

We can use TLx to construct a LLS inference rule from an inference rule of an end-active LNS
calculus. The procedure, that can also be automatised, is the same as the one presented in Refer-
ence [23], as we shall illustrate next.

Example 6.4. Consider the following application of the rule �R of Figure 3

Γ1 ⇒ Δ1// . . .//Γn−1 ⇒ Δn−1//Γn ⇒ Δn// ⇒ A

Γ1 ⇒ Δ1// . . .//Γn−1 ⇒ Δn−1//Γn ⇒ Δn ,�A
�R .

Applying TLx to the conclusion, we obtain xn−1Rxn ,X ⇒ Y ,xn :�A, where X = x1 : Γ1, . . . ,xn : Γn

and Y = x1 :Δ1, . . . ,xn :Δn . Applying TLx to the premise, we obtain xnRxn+1,X ⇒ Y ,xn+1 :A. We
thus obtain an application of the LLS rule

xnRxn+1,X ⇒ Y ,xn+1 :A
xn−1Rxn ,X ⇒ Y ,xn :�A

TLx (�R ).

Figure 17 presents the end-active labelled line sequent calculus LLSK for K.

The following result follows readily by transforming derivations bottom-up.
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Fig. 17. The modal rules of LLSK. The variable y in rule �R is fresh.

Fig. 18. System LLSe for non-normal labelled systems.

Fig. 19. LLSm for monotone labelled systems.

Fig. 20. Labelled systems for extensions of monotonic modal logics.

Theorem 6.5. Γ ⇒ Δ is provable in a certain end-active LNS calculus if and only if TLx1 (Γ ⇒ Δ)
is provable in the corresponding end-active LLS calculus.

Note that, in an end-active LLS, state variables might occur in the sequent and not in the relation
set. Such formulae will remain inactive toward the leaves of the derivation and absorbed by the
initial sequents in systems where weakening is admissible.

The concepts of LLS and TLx can be extended to handle the extensions LNSm and LNSe by
adding the relations Rm ⊆ SV × SV and Re ⊆ SV × (SV × SV), respectively, and defining

TL
m
xn

(Γ1 ⇒ Δ1// . . .//m Γn ⇒ Δn ) = xn−1Rmxn ,x1 : Γ1, . . . ,xn : Γn ⇒ x1 :Δ1, . . . ,xn :Δn

TL
e
xn

(Γ1 ⇒ Δ1// . . .//e (Σ⇒ Π; Ω ⇒ Θ)) = xn−1Re (xn ,yn ),x1 : Γ1, . . . ,xn : Σ,yn : Ω ⇒ x1 :Δ1, . . . ,xn :Π,yn :Θ.

The corresponding LLS rules for these systems are depicted in Figures 18, 19, and 20. Observe
that this is a generalisation of the algorithm in Reference [23], with the careful remark that, in
the case of non-normal systems, the algorithm generates premisses that are weakened w.r.t. the
ones presented in Figure 18. Thus, Theorem 6.5 is also valid for all the LLSm and LLSe systems
presented in this work. Finally, it is worth noticing that the definition of the mapping TLx for
auxiliary nesting operators is the same as the respective final nesting operators.
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6.2 Bipoles

In this section, we exploit the above mentioned fact that LNS systems often have separate left and
right introduction rules for modalities to present a systematic way of representing labelled line
nested rules as bipole clauses. For that, we will use (focused) linear logic (LLF), not only because
it extends the works in, e.g., References [49, 56], but also since this is the basis for using the rich
linear logic meta-level theory to reason about the specified systems. It is worth noticing, though,
that our approach is general enough for specifying inference rules in other frameworks, like LKF
[42, 50].

The set of formulae of LLF is given by the following grammar:

F ::= p | p⊥ | 1 | 0 | � | ⊥ | F1 ⊗ F2 | F1�F2 | F1 & F2 | F1 ⊕ F2 | ∃x .F | ∀x .F | ?F | ! F

The connectives ⊥,�,&,�,∀, ? are taken to be negative, the connectives 1, 0, ⊗, ⊕,∃, ! are consid-
ered to be positive. The notions of negative and positive polarities are extended to formulae in the
natural way by considering the outermost connective. Formulae are taken to be in negation nor-

mal form using the standard classical linear logic dualities, e.g., (A ⊗ B)⊥ ≡ A⊥�B⊥. Sequents in
(one-sided) linear logic are multisets of linear logic formulae. Focused Linear Logic LLF then adds
a focusing mechanism to this structure (see Section 5.1). We refer the reader to Reference [21] for
the rules of unfocused linear logic and to References [2, 49] for the focused versions.

6.2.1 Specifying Sequents. We briefly recapitulate the basic concepts of the specification of
sequent-style calculi in LLF from Reference [49]. Let obj be the type of object-level formulae and
let �·� and �·� be two meta-level predicates on these, i.e., both of type obj→ o, where o is a prim-
itive type denoting formulas. Object-level sequents of the form B1, . . . ,Bn ⇒ C1, . . . ,Cm (where
n,m ≥ 0) are specified as the multiset �B1�, . . . , �Bn�, �C1�, . . . , �Cm� within the LLF proof sys-
tem. The �·� and �·� predicates identify which object-level formulas appear on which side of the
sequent—brackets down for left (useful mnemonic: � for “left”) and brackets up for right. Finally,
a binary relation R is specified by a meta-level atomic formula of the form R (·, ·).

6.2.2 Specifying Inference Sequent Rules. Inference rules are specified by a re-writing clause
that replaces the active formulae in the conclusion by the active formulae in the premises. The lin-
ear logic connectives indicate how these object level formulae are connected: contexts are copied
(&) or split (⊗), in different inference rules (⊕) or in the same sequent (�). For example, the spec-
ification of the rules of LLSK (Figure 17) is

(�R ) �x :�A�⊥ ⊗ R (z,x )⊥ ⊗ ∀y.(�y :A��R (x ,y))
(�L ) �x :�A�⊥ ⊗ R (x ,y)⊥ ⊗ �y :A��R (x ,y),

where all the variables are bounded by an outermost existential quantifier.
The correspondence between focusing on a formula and an induced big-step inference rule is

particularly interesting when the focused formula is a bipole.

Definition 6.6. A monopole formula is a linear logic formula that is built up from atoms and
occurrences of the negative connectives, with the restriction that ? has atomic scope. A bipole is
a positive formula built from monopoles and negated atoms using only positive connectives, with
the additional restriction that ! can only be applied to a monopole.

Roughly speaking, bipoles are positive formulae in which no positive connective can be in the
scope of a negative one. Focusing on such a formula will produce a single positive and a single
negative phase. This two-phase decomposition enables the adequate capturing of the application
of an object-level inference rule by the meta-level logic. For example, focusing on the bipole clause
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Fig. 21. The LLF specification of the modal rules of LLSEC for the logic EC.

(�R ) will produce the derivation

π1 π2

Ψ; Δ′, �y :A�,R (x ,y)) ⇑
Ψ; Δ′ ⇓ ∀y.(�y :A��R (x ,y))

[R ⇑,∀,�]

Ψ; Δ ⇓ ∃A,x , z.�x :�A�⊥ ⊗ R (z,x )⊥ ⊗ ∀y.(�y :A��R (x ,y))
[∃, ⊗]

where Δ = �x :�A� ∪ R (z,x ) ∪ Δ′, and π1 and π2 are, respectively,

Ψ; �x :�A� ⇓ �x :�A�⊥
I1

Ψ;R (z,x ) ⇓ R (z,x )⊥
[∃, I1].

This one-step focused derivation will: (a) consume �x :�A� and R (z,x ); (b) create a fresh label y;
and (c) add �y :A� and R (x ,y) to the context. Observe that this matches exactly the application of
the object-level rule TLx (�R ).

When specifying a system (logical, computational, etc.) into a meta-level framework, it is desir-
able and often mandatory that the specification is faithful, that is, one step of computation on the
object level should correspond to one step of logical reasoning in the meta level. This is what is
called adequacy [55].

Definition 6.7. A specification of an object sequent system is adequate if provability is preserved
for (open) derivations, such as inference rules themselves.

Clearly, not every sequent rule can be (adequately) specified in LLF. As an example, the rule es
TL

m
x (T) (Figure 20) cannot be properly specified in our setting, since it lacks a principal formula.

All other LLS rules derived from LNS systems presented in this article can be adequately specified.
As an example, Figure 21 shows adequate specifications in LLF of the labelled systems for the

logic EC. These specifications can be used for automatic proof search as illustrated by the following
theorem, which is shown readily using the methods in Reference [49].

Theorem 6.8. Let L be a LLS system. A sequent R, Γ ⇒ Δ is provable in L if and only if there is

a finite L0 ⊆ L with L0 the theory given by the clauses of an adequate specification of the inference

rules of L0 such that L0;R ⇑ �Γ�, �Δ� is provable in LLF.

It turns out that the encoding of LNS into LL enabled the proposal of a general theorem prover.
The system (called POULE for PrOver for seqUent and Labelled systEms, available at http://subsell.
logic.at/nestLL/) has an LLF interpreter that takes specified LLS rules (LLF clauses–the theory) and
sequents and outputs a proof of the sequent, if it is provable.

The prover is parametric in the theory, and hence it profits from the modularity of the specified
systems. Indeed, since the core is a prover for focused linear logic, POULE can be transformed into
a specific prover for each specified logic by parametrically adding the encoded rules of the object
system as theories in LL. Hence, for example, if the prover should validade theorems in K, then
one only has to add the encoding of the system (as a theory) to the prover.

It is well known that generality often implies inefficiency, and POULE is no exception to that.
Hence, we have also done a direct implementation of LNS systems in Prolog, parametric on the
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modal axioms, that can be found in https://logic.at/staff/lellmann/lnsprover/. We have no inten-
tion of comparing such implementations, since they are different in nature: a direct prover built
from axioms is more adequate for proving object-level theorems, while POULE exemplifies how
the encoding together with the meta-level prover based in LL are suitable for proving meta-level

properties (here: derivability).

7 CONCLUDING REMARKS AND FUTURE WORK

Following Reference [43], in Reference [37] linear nested sequents were considered as an alter-
native presentation for modal proof systems. Since locality often entails modularity, this enabled
modular presentations for different modal systems just by adding the local rules related to the
new modalities to already defined linear nested sequent systems. In Reference [40], we continued
the programme of representing modal proof systems in LNS, including suitable extensions of K, a
simply dependent bimodal logic and some standard non-normal modal logics.

In this article, we have generalised the works op. cit., presenting local systems for a family of
simply dependent multimodal logics as well as a large class of non-normal modal logics. All the
proposed systems were proven sound and complete w.r.t. the respective sequent systems and, as
a side effect, we proved that each LNS system presented in this work could be restricted to its
end-active version. This enabled a notion of normal forms for LNS derivations, narrowing the
proof search space and hence allowing the proposal of more efficient local proof systems. The
possibility of restricting systems to their end-active versions also entails an automatic procedure
for obtaining labelled sequent versions of LNS systems. Finally, we showed that the inference rules
of such labelled systems can be seen as bipoles, and hence are amenable to adequate embeddings
into linear logic, which enabled the implementation of a general theorem prover, parametric in the
modal axioms considered.

There are at least five future research directions that could be taken from this work.
First, following the works in References [49, 56], it should be possible to use some of the meta-

theory of linear logic to draw conclusions about the object-level LNS systems. For example, the
problem of providing general procedures for guaranteeing cut admissibility for nested systems is
still little understood. It turns out that the cut rule has an inherent duality: The cut formula is
both a conclusion of a statement and an hypothesis of another. In sequent systems, this duality is
often an invariant, being preserved throughout the cut elimination process. Developing general
methods for detecting such invariants enables the use of meta-level frameworks to uniformly rea-
son about object-level properties. In Reference [49], bipoles and focusing were enough for both:
specifying sequent systems and providing sufficient meta-level conditions for cut elimination. In
this work, we showed that the bipole-focusing approach can be extended for specifying nested and
labelled systems. However, the meta-level characterisation of cut elimination invariants for these
formalisms is still an open problem.

Second, it would be interesting to see to what extend the labels in LLS reflect the semantic models
behind the studied logics. In the labelled sequent framework, Kripke’s relational semantics [33] is
explicitly added to sequents, so that labels correspond to worlds [51, 68]. In LNS instead, labels
correspond to the depth of the nesting. Goré and Ramanayake in Reference [23] presented a direct
translation between proofs in labelled and nested systems for some normal modal logics, while
Fitting in Reference [16] showed how to relate nestings with Kripke structures for intuitionistic
logic. We believe it is possible to extend these ideas for relating not only (general) frames with
(classical) labelled multi-modal logics, but also neighbourhood semantics labelled systems [12]
with (linear) nested systems for non-normal modal logics.

A next natural topic for investigation would be to study this proof system/semantics problem
in the substructural setting. The proof theoretical problem of modalities over linear logic has been
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first addressed in Reference [24], where different behaviours of the exponential connectives in
linear logic were studied. We have recently [38] extended Guerrini’s work to show how normal
multi-modalities can be added to linear logic, having, as a side effect, a notion of modality that
smoothly extends that of subexponentials [13]. Among the many problems that are still open in
this subject, two are of particular interest: is it possible to extend substructural logics with non-
normal modalities in a general way, similarly to what is done in Reference [63]? If so, then which
is the semantical meaning of the resulting logics? We plan to investigate these problems under the
linear logic view.

From a more conceptual point of view, it would also be interesting to investigate the precise con-
nection between the linear nested sequent framework and the framework of dual-context calculi
as considered, e.g., in References [32, 60] in a constructive setting. Since in end-active linear nested
sequent calculi the applications of the rules can be restricted so that only the last two components
are active, we strongly suspect that every such linear nested sequent calculus can be converted
into a dual-context calculus by essentially forgetting all but the last two components. However,
there are calculi in (essentially) the linear nested sequent framework that apparently cannot be re-
stricted to being end-active, such as the calculus for modal logic KB in Reference [59], the calculi
for tense logics of linear frames in References [29, 30] or the calculus for the intermediate logic LC
in Reference [34]. We leave the investigation of precise criteria for when a linear nested sequent
calculus can be converted into a dual-context calculus as well as a comparison of the benefits and
drawbacks of each approach for future research.

Last, concerning the construction of the LNS systems themselves, a natural next step would be
the investigation of general methods for obtaining such systems from cut-free sequent systems,
or even directly from Hilbert-style axioms.

APPENDIX

A PROOFS OF CUT ELIMINATION

Since the calculi include the contraction rules, we follow the standard method of eliminating the
multicut rule:

Γ ⇒ Δ,An Am , Σ⇒ Π
Γ, Σ⇒ Δ,Π

Mcut

(with n,m ≥ 1) instead of the standard cut rule. As usual, since the latter is a specific instance of
the multicut rule, this implies cut elimination. For the sake of exposition, we deviate slightly from
standard terminology in the following way.

Definition A.1. The main formula of an application of a propositional rule or the modal rule T
from Figure 10 is the formula occurring in the conclusion with a greater multiplicity than in any
of the premisses. In particular, the main formulae of an application of init or ⊥L are all formulae
occurring in the conclusion. The main formulae of an application of a modal rule from Figure 10
apart from T are all the formulae occurring in the conclusion. In an application of a structural rule,
i.e., Weakening or Contraction, there are no main formulae.

Hence, e.g., the formula �A in would be a main formula in the applications of rules D and D4
below left and centre but not in the application of rule T below right,

A,B ⇒
�A,�B ⇒ D

�A,B ⇒
�A,�B ⇒ D4

�A,B ⇒
�A,�B ⇒ T.

In the statement of the cut elimination theorem, we write GLConWMcut for the calculus
GLConW with the multicut rule Mcut.
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Theorem A.2. Let L be the logic MA with A ⊆ {N,C,P,D, 4} or one of the logics in

{M5,MP5,M45,MP45,MD45,K45,KD45}.
Then every derivation in GLConWMcut can be converted into a derivation in GLConW with the

same endsequent.

Proof. The proof of elimination of multicut is reasonably standard by induction on the tuples
(c,d ) in the lexicographic ordering <lex, where c is the complexity of the application of multicut,
i.e., the number of symbols in the cut formula, and d is its depth, i.e., the sum of the depths of the
derivations of the two premisses of the application of multicut.

So take a topmost application

D1....

Γ ⇒ Δ,An R1

D2....

Am , Σ⇒ Π
R2

Γ, Σ ⇒ Δ,Π
Mcut

of multicut in a derivation in GLConWMcut. Assume that this application of multicut is of com-
plexity c and depth d , thatD1 andD2 are the derivations of the two premisses of this application,
and that R1 and R2 are the two last applied rules inD1 andD2, respectively. Furthermore, assume
that we have shown the statement for applications of multicut with complexity c ′ and depth d ′

such that (c ′,d ′) <lex (c,d ).
If d = 0, then both R1 and R2 are one of the rules init or ⊥L and the conclusion of the multicut

is obtained directly by one of these rules.
So suppose d > 0. We distinguish cases according to whether an occurrence of the cut formula

was a main formula in the last applied rule in D1 and D2, respectively.

(1) No occurrence of the cut formula is a main formula in R1. In this case R1 is a structural
rule, the rule T, or a propositional rule apart from init,⊥L . This case is handled as usual
by pushing the multicut into the premiss(es) of R1 and applying the induction hypothesis
on the depth of the application of multicut; e.g., if R1 is ∨L , then the derivation D1 ends
in

Γ′,B ⇒ Δ,An Γ′,C ⇒ Δ,An

Γ′,B ∨C ⇒ Δ,An
∨L .

From this, we obtain a new derivation ending in

Γ′,B ⇒ Δ,An

D2....
Am , Σ⇒ Π

Γ′,B, Σ⇒ Δ,Π
Mcut

Γ′,C ⇒ Δ,An

D2....
Am , Σ⇒ Π

Γ′,C, Σ⇒ Δ,Π
Mcut.

Γ′,B ∨C, Σ, Σ⇒ Δ,Π
∨L

Now the two applications of multicut have complexity c and depth less than d and we are
done using the induction hypothesis.

(2) At least one occurrence of the cut formula is a main formula in R1, but none of its occur-
rences is a main formula in R2. This case is analogous to the previous case, but pushing
the multicut into the premiss(es) of R2 instead of R1.

(3) Some occurrences of the cut formula are main formulae both in R1 and R2. In this case,
we have c > 1, since for c = 1 the cut formula A is a propositional variable or ⊥, and since
some of its occurrences are main formulae both in R1 and R2, we would have d = 0. So the
rules R1,R2 must be propositional rules apart from init,⊥L or modal rules. As usual, we
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distinguish cases according to the last applied rules R1,R2, and first apply cross-cuts, i.e.,
multicuts on the premiss(es) of R1 and the conclusion of R2 and vice versa to eliminate
occurrences of the cut formula from the premisses of the two rules. These multicuts then
have smaller depth and are eliminated using the induction hypothesis. Then we reduce
the complexity of the multicut. Since the propositional cases are standard, we only treat
an exemplary case.
(a) R1 = ∨R and R2 = ∨L . Then the derivations D1 and D2 end in

Γ ⇒ Δ,B ∨Cn−1,B,C

Γ ⇒ Δ,B ∨Cn ∨R
B,B ∨Cm−1, Σ⇒ Π C,B ∨Cm−1, Σ⇒ Π

B ∨Cm , Σ⇒ Π
∨L .

From this, we obtain derivations ending in

Γ ⇒ Δ,B ∨Cn−1,B,C

B,B ∨Cm−1, Σ⇒ Π C,B ∨Cm−1, Σ⇒ Π

B ∨Cm , Σ⇒ Π
∨L

Γ, Σ⇒ Δ,Π,B,C
Mcut

and

Γ ⇒ Δ,D ∨Cn−1,B,C

Γ ⇒ Δ,B ∨Cn ∨R
D,B ∨Cm−1, Σ⇒ Π

D, Γ, Σ ⇒ Δ,Π
Mcut

with D either of the formulaeC,D. These two applications of multicut have complex-
ity c and depth less than d and hence are eliminated using the induction hypothesis.
From the resulting derivations, finally we obtain a derivation ending in

Γ, Σ⇒ Δ,Π,B,C B, Γ, Σ⇒ Δ,Π
Γ, Σ, Γ, Σ ⇒ Δ,Π,Δ,Π,C

Mcut
C, Γ, Σ⇒ Δ,Π

Γ, Σ, Γ, Σ, Γ, Σ ⇒ Δ,Π,Δ,Π,Δ,Π
Mcut.

Γ, Σ⇒ Δ,Π
Con

Here the newly introduced applications of Mcut have depth possibly greater than
d but complexity less than c , and hence also are eliminated using the induction
hypothesis.

(b) R1 = M: In this case, the logic is MA for A ⊆ {N,P,D, 4} or one of {M5,MP5,
M45,MP45,MD45}. So R2 is one of M,P,D, T, 4,D4,D5. For the sake of brevity, in
the following we only show the reductions of the multicuts, denoted by�. As usual,
the newly introduced multicuts have the same complexity but lower depth, or of lower
complexity than the original ones.
(i) R2 = (M):

A⇒ B
�A⇒ �B M

B ⇒ C
�B ⇒ �C M

�A⇒ �C Mcut
�

A⇒ B B ⇒ C
A⇒ C

Mcut.

�A⇒ �C M

(ii) R2 = P: Similar to the previous case.
(iii) R2 = D: The case wherem = 1 is as above. Ifm > 1, then we only need to add some

structural rules:

A⇒ B
�A⇒ �B M

B,B ⇒
�B,�B ⇒ D

�A⇒ Mcut
�

A⇒ B B,B ⇒
A⇒ Mcut

A,A⇒ W

�A,�A⇒ D

�A⇒ Con
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(iv) R2 = T:

A⇒ B
�A⇒ �B M

Γ,�Bm−1,B ⇒ Δ

Γ,�Bm ⇒ Δ
T

Γ,�A⇒ Δ
Mcut

� A⇒ B

A⇒ B
�A⇒ �B M

Γ,�Bm−1,B ⇒ Δ
Γ,B ⇒ Δ

Mcut

Γ,A⇒ Δ
Mcut

Γ,�A⇒ Δ
T

(v) R2 = 4:

A⇒ B
�A⇒ �B M

�B ⇒ C
�B ⇒ �C 4

�A⇒ Mcut
�

A⇒ B
�A⇒ �B M �B ⇒ C

�A⇒ C
Mcut

�A⇒ �C 4

(vi) R2 = D4: We consider the case thatm = 2. The other cases are as above.

A⇒ B
�A⇒ �B M

�B,B ⇒
�B,�B ⇒ D4

�A⇒ Mcut
�

A⇒ B

A⇒ B
�A⇒ �B M �B,B ⇒

�A,B ⇒ Mcut

�A,A⇒ Mcut

�A,�A⇒ D4

�A⇒ Con

(vii) R2 = D5: as for M
(c) R1 = N:

(i) R2 = M: Similar to case 3(b)ii
(ii) R2 = P: As in the previous case.

(iii) R2 = D: The case wherem = 2 is similar to the previous case. Form = 1, we have:

⇒ A
⇒ �A N

A,B ⇒
�A,�B ⇒ D

�B ⇒ Mcut
�

⇒ A A,B ⇒
B ⇒ Mcut

B,B ⇒ W

�B,�B ⇒ D

�B ⇒ Con

(iv) R2 = T: Similar to case 3(b)iv.
(v) R2 = 4: Like case 3(b)v.

(vi) R2 = D4: The case withm = 2 is like case 3(b)vi. Ifm = 1, then again we need some
structural rules:

⇒ A
⇒ �A N

�A,B ⇒
�A,�B ⇒ D4

�B ⇒ Mcut
�

⇒ A
⇒ �A N �A,B ⇒

B ⇒ Mcut

B,�B ⇒ W

�B,�B ⇒ D4

�B ⇒ Con

(vii) R2 = D5: As for the previous case.
(viii) R2 = C: We have the following (substituting N for C in the last step if Γ is empty):

⇒ A
⇒ �A N

Am , Γ ⇒ B

�Am ,�Γ ⇒ �B C

�Γ ⇒ �B Mcut
�

⇒ A Am , Γ ⇒ B
Γ ⇒ B

Mcut

�Γ ⇒ �B C

(ix) R2 = CD: As for the previous case.
(x) R2 = C4: Similar to case 3(c)xiii.

(xi) R2 = CD4: Similar to case 3(c)xiii.
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(xii) R2 = K4: Similar to case 3(c)xiii.
(xiii) R2 = K45:

⇒ A
⇒ �A N

�Am−k ,�Γ,Ak , Σ⇒ B,�Δ

�Am ,�Γ,�Σ⇒ �B,�Δ
K45

�Γ,�Σ⇒ �B,�Δ
Mcut

� ⇒ A

⇒ A
⇒ �A N �Am−k ,�Γ,Ak , Σ⇒ B,�Δ

�Γ,Ak , Σ⇒ B,�Δ
Mcut

�Γ, Σ⇒ B,�Δ
Mcut

�Γ,�Σ⇒ �B,�Δ
K45

(xiv) R2 = KD45: Similar to case 3(c)xiii.
(d) R1 = 4: Since the rule 4 is a special case of each of C4, K4, and K45, here we only treat

the cases not involving C, i.e., where R2 is one of M,P,D, T, 4,D4. The case of D5 does
not occur with the considered logics.

(i) R2 = (M): Similar to case 3(b)i
(ii) R2 = P:

�A⇒ B
�A⇒ �B 4

B ⇒
�B ⇒

�A⇒ Mcut
� �A⇒ B B ⇒

�A⇒ Mcut

(iii) R2 = D: The case where m = 2 is similar to the previous case. If m = 1, then we
have the following reduction, using the fact that whenever 4,D ∈ A, then GMA
contains the rule D4:

�A⇒ B
�A⇒ �B 4

B,C ⇒
�B,�C ⇒ D

�A,�C ⇒ Mcut
�

�A⇒ B C,B ⇒
�A,C ⇒ Mcut

�A,�C ⇒ D4

(iv) R2 = T:

�A⇒ B
�A⇒ �B 4

Γ,�Bm−1,B ⇒ Δ

Γ,�Bm ⇒ Δ
T

Γ,�A⇒ Δ
Mcut

� �A⇒ B

�A⇒ B
�A⇒ �B 4

Γ,�Bm−1,B ⇒ Δ
Γ,B ⇒ Δ

Mcut

Γ,�A,�A⇒ Δ
Mcut

Γ,�A⇒ Δ
Con

(v) R2 = 4:

A⇒ B
�A⇒ �B 4

�B ⇒ C
�B ⇒ �C 4

�A⇒ Mcut
�

A⇒ B
�A⇒ �B 4 �B ⇒ C

�A⇒ C
Mcut

�A⇒ �C 4
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(vi) R2 = D4: The case where m = 1 is similar to the previous case respectively
case 3(d)vi. Ifm = 2, then we have (similarly to case 3(d)iv):

�A⇒ B
�A⇒ �B 4

B,�B ⇒
�B,�B ⇒ D4

�A⇒ Mcut
� �A⇒ B

�A⇒ B
�A⇒ �B 4

B,�B ⇒
�A,B ⇒ Mcut

�A,�A⇒ Mcut

�A⇒ Con

(e) R1 = 5: Again, since the rule 5 is a special case of rule K45, here we only consider the
cases not including C, i.e., where the logic is not K45 or KD45. The remaining cases
are treated in case 3j. In this case R2 then is one of M,P,D, 4,D4,D5.

(i) R2 = M: Similar to case 3(b)vi.
(ii) R2 = P: Similar to case 3(c)vi.

(iii) R2 = D: Where m = 1 this is similar to case 3(d)iii, using that in this case the
calculus also includes the rules D5 and 4. Where n = 1 and m = 2, this is similar
to case 3(c)vi.

(iv) R2 = 4: For n = 2, we have:

⇒ A,�A
⇒ �A,�A 5

�A⇒ B
�A⇒ �B 4

⇒ �B Mcut
�

⇒ A,�A
⇒ �A,�A 5 �A⇒ B

⇒ B
Mcut

⇒ B,�B W

⇒ �B,�B 5

⇒ �B Con

For n = 1, we have:

⇒ A,�B
⇒ �A,�B 5

�B ⇒ C
�B ⇒ �C 4

⇒ �A,�C Mcut
�

⇒ A,�B
�B ⇒ C
�B ⇒ �C 4

⇒ A,�C Mcut

⇒ �A,�C 5

(v) R2 = D4: The case of n = 1 and m = 2 is similar to case 3(e)ii, that for n = 2 and
m = 1 to case 3(c)vi. For n =m = 2, we have:

⇒ A,�A
⇒ �A,�A 5

A,�A⇒
�A,�A⇒ D4

⇒ Mcut

� ⇒ A,�A
A,�A⇒
�A,�A⇒ D4

⇒ A
Mcut

⇒ A,A
⇒ �A,�A 5

A,�A⇒
A⇒ Mcut

⇒ Mcut

The case of n =m = 1 is similar to cases 3(d)iii and 3(d)v, using the fact that in
this case the calculus also includes the rules 4 and D5.

(vi) R2 = D5: Similar to the previous case.
(f) R1 = D5: Again, we only consider the cases not including C, for the remaining case

see case 3k. The only relevant cases then are that R2 is one of M,P,D, 4,D4,D5.
(i) R2 = M: Similar to case 3(b)v:

A⇒ �B
�A⇒ �B D5

B ⇒ C
�B ⇒ �C M

�A⇒ �C Mcut
� A⇒ �B

B ⇒ C
�B ⇒ �C M

A⇒ �C Mcut

�A⇒ �C D5

(ii) R2 = P: Similar to the previous case.
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(iii) R2 = D: The case of m = 2 is similar to the previous case, with additional struc-
tural rules. The case of m = 1 is similar to case 3(b)v, using that in this case the
calculus also includes the rule D4.

(iv) R2 = 4: Similar to case 3(f)i.
(v) R2 = D4: Similar to case 3(f)iii.

(vi) R2 = D5: As in case 3(f)i.
(g) R1 = C:

(i) R2 = P: Similar to case 3(b)ii, using that in this case also CD is in the rule set:

Γ ⇒ A
�Γ ⇒ �A C

A⇒
�A⇒ P

�Γ ⇒ Mcut
�

Γ ⇒ A A⇒
Γ ⇒ Mcut

�Γ ⇒ CD

(ii) R2 = D: Similar to the previous case.
(iii) R2 = T:

Γ ⇒ A
�Γ ⇒ �A C

Σ,�Am−1,A⇒ Π

Σ,�Am ⇒ Π
T

Σ,�Γ ⇒ Π
Mcut

�
Γ ⇒ A

Γ ⇒ A
�Γ ⇒ �A C

Σ,�Am−1,A⇒ Π
Σ,�Γ,A⇒ Π

Mcut

Σ, Γ,�Γ ⇒ Π
Mcut

Σ,�Γ,�Γ ⇒ Π
T

Σ,�Γ,⇒ Π
Con

(iv) R2 = 4: See case 3(g)xi.
(v) R2 = D4: Similar to case 3(g)xi.

(vi) R2 = D5: See case 3(g)xiii.
(vii) R2 = C:

Γ ⇒ A
�Γ ⇒ �A C

Am , Σ⇒ B

�Am ,�Σ⇒ �B C

�Γ,�Σ⇒ �B Mcut
�

Γ ⇒ A Am , Σ⇒ B
Γ, Σ⇒ B

Mcut

�Γ,�Σ⇒ �B C

(viii) R2 = CD: Similar to the previous case.
(ix) R2 = C4:

Γ ⇒ A
�Γ ⇒ �A C

�Am−k ,�Σ,Ak ,Ω ⇒ B

�Am ,�Σ,�Ω ⇒ �B K4

�Γ,�Σ,�Ω ⇒ �B Mcut

�
Γ ⇒ A

Γ ⇒ A
�Γ ⇒ �A C �Am−k ,�Γ,�Σ,Ak ,Ω ⇒ B

�Γ,�Σ,Ak ,Ω ⇒ B
Mcut

Γ,�Γ,�Σ,Ω ⇒ �B Mcut

�Γ,�Γ,�Σ,�Ω ⇒ �B K4

�Γ,�Σ,�Ω ⇒ �B Con

(x) R2 = CD4: Similar to case 3(g)ix.
(xi) R2 = K4: See case 3(g)ix.

(xii) R2 = K45: Similar to case 3(g)xiii.
(xiii) R2 = KD45: Similar to case 3(g)xi:
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(h) R1 = C4: Similar to case 3g.
(i) R1 = K4: See case 3h and case 3c.
(j) R1 = K45: This case only occurs for the logics K45 and KD45, limiting the possible

cases to the following:
(i) R2 = 4: See case 3(j)ix.

(ii) R2 = D4: See case 3(j)x.
(iii) R2 = D5: See case 3(j)x.
(iv) R2 = C: See case 3(j)ix.
(v) R2 = CD: See case 3(j)x.

(vi) R2 = C4: See case 3(j)ix.
(vii) R2 = CD4: See case 3(j)x.

(viii) R2 = K4: See case 3(j)ix.
(ix) R2 = K45: We show the most interesting case, the remaining cases are similar.

�Γ, Σ⇒ A,�An−1,�Δ

�Γ,�Σ⇒ �An ,�Δ
K45

�Am−k ,�Ω,Ak ,Θ⇒ B,�Π

�Am ,�Ω,�Θ⇒ �B,�Π
K45

�Γ,�Σ,�Ω,�Θ⇒ �Δ,�B,�Π
Mcut

�

.... D1

�Γ, Σ,�Ω,�Θ⇒ A,�Δ,�B,�Π

.... D2

�Γ,�Σ,�Ω,Ak ,Θ⇒ �Δ,B,�Π
�Γ, Σ,�Ω,�Θ,�Γ,�Σ,�Ω,Θ⇒ �Δ,�B,�Π,�Δ,B,�Π

Mcut

�Γ,�Σ,�Ω,�Θ,�Γ,�Σ,�Ω,�Θ⇒ �Δ,�B,�Π,�Δ,�B,�Π
K45

�Γ,�Σ,�Ω,�Θ⇒ �Δ,�B,�Π
Con

where D1 is

�Γ, Σ⇒ A,�Δ

�Am−k ,�Ω,Ak ,Θ⇒ B,�Π

�Am ,�Ω,�Θ⇒ �B,�Π
K45

�Γ, Σ,�Ω,�Θ⇒ A,�Δ,�B,�Π
Mcut

and D2 is

�Γ, Σ⇒ A,�An−1,�Δ

�Γ,�Σ⇒ �An ,�Δ
K45 �Am−k ,�Ω,Ak ,Θ⇒ B,�Π

�Γ,�Σ,�Ω,Ak ,Θ⇒ �Δ,B,�Π
Mcut

(x) R2 = KD45: Similar to the previous case.
(k) R1 = KD45: Similar to case 3j. �
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