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Abstract. Normative reasoning is inherently defeasible. Formal argumentation has
proven to be a unifying framework for representing nonmonotonic logics. In this
work, we provide an argumentative characterization of a large class of Input/Output
logics, a prominent defeasible formalism for normative reasoning. In many nor-
mative reasoning contexts, one is not merely interested in knowing whether a spe-
cific obligation holds, but also in why it holds despite other norms to the contrary.
We propose sequent-style argumentation systems called Deontic Argument Calculi
(DAC), which serve transparency and bring meta-reasoning about the inapplicabil-
ity of norms to the object language level. We prove soundness and completeness be-
tween DAC-instantiated argumentation frameworks and constrained Input/Output
logics. We illustrate our approach in view of two deontic paradoxes.

Keywords. Nonmonotonic logic, Argumentation, Deontic logic, Normative reasoning

1. Introduction

Obligations and norms fulfil a crucial role in a variety of fields, including law, ethics,
AI, and everyday life [1]. The logical study of normative reasoning investigates reason-
ing with such concepts in formal systems of logic, e.g., deontic logics. Its importance
increases with the development of intelligent autonomous systems. Complex normative
systems often require reasoning with normative conflicts, exceptions, preferences and
priorities [1]. A central challenge is to provide transparent formal models of the under-
lying reasoning processes, e.g., by means of nonmonotonic logics.

Over the past decades, abstract argumentation has proven to be a unifying frame-
work for the representation of large classes of nonmonotonic logics [2]. Formal argumen-
tation provides both a natural and a transparent model of conflicts and their resolution
in terms of conflicting arguments. In this way, it provides a promising basis for tackling
the challenging requirements of normative reasoning. The logical analysis of normative
reasoning is well-established [1] with the Input/Output framework (I/O) being one of the
central approaches [3]. Nonmonotonicity is captured in constrained I/O logics through
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considering maximal consistent families of norms. In recent years, also argumentative
representations of deontic logics have attracted increasing interest [4,5,6,7,8,9].

This paper is the first to provide argumentative characterizations for a significant
class of I/O logics, including all original logics from [3]. In this way, we are able to com-
bine the advantages of I/O logic with those of formal argumentation. On the one hand, I/O
is a highly expressive and robust framework with two decades of developments, includ-
ing many applications (e.g., priorities, constitutive norms, cognitive modeling, causal
reasoning [1,10]). On the other hand, it does not provide the level of transparency that
comes with the explicit representation of conflicts in formal argumentation.

In particular, I/O leaves some central challenges of normative reasoning unad-
dressed. When answering the question as to why an obligation holds, one must state rea-
sons. Moreover, often it does not suffice to know why a specific obligation holds, one
must know why other obligations to the contrary do not hold. E.g., in order to understand
why “I am permitted to overtake on the left, despite having to drive on the right” one must
know how the first norm relates to the second. In this case, the first is an exception that
renders the latter inapplicable in the context of “overtaking another vehicle”. Common
approaches to I/O logics—as well as deontic logics—do not provide means for making
explicit the reasons why certain obligations are not derivable. Despite their central role
in ethics and explanation [11], a general lack of explicit modeling of reasons in formal
systems has been recently identified [12] (with some exceptions, e.g., [13]). Support and
defeat relations are central in the context of reasons as well as in formal argumentation,
which makes the latter an ideal framework to reason with and about reasons.

We address these problems by introducing a class of rule-based proof systems called
Deontic Argument Calculi (DAC) for normative reasoning by means of argumentation.

Our conceptual contribution is twofold: First, we use labels on formulae to make the
presentation transparent on the object level, i.e., we can syntactically distinguish between
facts, obligations, and constraints without “burdening” the logics with modalities [10].
Second, we internalize some of the meta-reasoning in the I/O formalism by referring
to the inapplicability of norms on the object language level. Consequently, our calculi
generate both arguments that provide explicit reasons for obligations and arguments that
defeat other arguments by giving explicit reasons for why certain norms are inapplicable.
The second type of arguments concerns the nonmonotonicity of normative reasoning.
The possibility to reason about the inapplicability of norms on the object language level
distinguishes our work from other systems such as [14,15]. We illustrate the utility of our
approach using the notion of related admissibility [16] to explain why some obligation
holds despite certain norms to the contrary.

The technical contribution of this work contains two types of completeness results:
First, we show adequacy between DAC and a significant class of monotonic I/O conse-
quence relations. Second, we prove that formal argumentation frameworks instantiated
with DAC arguments characterize a large class of nonmonotonic I/O logics. This makes
our work the first to argumentatively characterize I/O logic. Moreover, DAC enjoys a
modularity particularly suitable for expansions and our calculi are modular with respect
to a large class of base logics. Last, our work contributes to previous representation re-
sults in formal argumentation concerning systems based on maximal consistent sets [2].
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(i)

a =

[
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[
(⊤,r)
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]

c2 =

[
(⊤, p)
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]

e =
[
(⊤, p),(¬(r∧ p))c

⇒¬(⊤,r)

]

d =

[
(⊤,r),(¬(r∧ p))c

⇒¬(⊤, p)

]

b =

[
(⊤, p)
⇒ po

]
(ii)

Figure 1. Defeasible normative reasoning examples: (i) The Chisholm scenario (Example 1). Arrows denote
defeat relations between arguments, relative to C ′ = {¬hc} (Example 2). (ii) A deontic conflict (Example 3).
Argument e defends {b,c2,e}, whereas argument d defends {a,c1,d}.

2. Basic Terminology and Benchmark Examples

We introduce basic terminology by considering two examples. Developments in deontic
logic are driven by challenging examples [17]. Here, we focus on contrary-to-duty rea-
soning and deontic conflicts. Both can be effectively addressed using nonmonotonic rea-
soning [10] (for alternative approaches see [1]). The language L is defined as follows:

ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | ϕ → ϕ

with p ∈ Atoms. All connectives are primitive in order to be modular with respect to the
base logic (Section 3). We use p,q,r, ... for atoms, and reserve ϕ,ψ,θ , ... for arbitrary
formulae of L . In order to increase transparency we label formulae of L , i.e., L i =
{ϕ i | ϕ ∈ L } for i ∈ { f ,o,c}. We have formulae expressing facts L f , obligations L o,
and constraints L c. Moreover, we employ pairs of formulae L n = {(ϕ,ψ) | ϕ,ψ ∈L }.
A pair (ϕ,ψ) represents a norm: i.e., “given fact ϕ , it is obligatory that ψ” [3].

We work with knowledge bases of the type ⟨F ,N ,C ⟩, where F ⊆L f constitutes
the factual context, N ⊆ L n denotes a system of norms, and C ⊆ L c represents the
constraints with which output must be consistent. The basic idea is that facts (input) trig-
ger norms, from which obligations are detached (output). Moreover, constraints control
the output to ensure consistency. The above is in the spirit of constrained I/O logic [3].

Suppose we have a single fact F = {p f }, a norm system N = {(p,q)}, and no
constraints, then an argument concluding that q is obligatory is of the following form,

p f ,(p,q)⇒ qo

The left-hand side (lhs) gives reasons for the conclusion on the right-hand side (rhs).

Example 1 (Chisholm scenario [1], Figure 1-i). Jones is under the obligation to go and
help her neighbors (⊤,h).2 Furthermore, Jones knows if she goes to help, she must tell
them she goes (h, t). Now, if Jones does not go, she ought not to tell them she goes
(¬h,¬t). It turns out that Jones does not go to help ¬h f . Clearly, Jones has violated
her primary obligation to go and help. Let the knowledge base be F = {¬h f } and
N = {(⊤,h),(h, t),(¬h,¬t)}. Figure 1-i presents arguments a,c, and d that can be con-
structed from the knowledge base (we explain the meaning of b and the arrows in Exam-

2A norm (⊤,ϕ) with a precondition ⊤ is triggered by default, that is, even by an empty factual context.



ple 2); e.g., in argument a, the reasons for not telling ¬to are the fact ¬h f and the norm
(¬h,¬t). What must Jones do in this contrary-to-duty scenario? The desired answer is
that she ought not to tell the neighbors she goes ¬to. Formalizations of this scenario
cause problems for (monadic) deontic logics, e.g., both t and ¬t become obligatory.

Arguments do not only provide reasons in support of an obligation, but also defend
them from potential defeaters. A rebuttal defeat opposes the conclusion of an argument
without pinpointing the reason as to why. In contrast, attacks on reasons—i.e., under-
cuts—are arguments that express which reasons are inapplicable given some context. We
adopt undercuts since they are more transparent about attacks. Recall that constraints are
consistency requirements and suppose C = {¬qc}.3 Then, a defeating argument

p f ,¬qc ⇒¬(p,q)

expresses that, if output is to be consistent with the constraint ¬qc, in context p f the
norm (p,q) cannot be consistently asserted as a reason (since it would detach qo). Hence,
¬(p,q) expresses that this norm is inapplicable given F and C . An argumentation
framework is then simply a set of arguments with defeat relations holding between them.

Example 2 (Example 1 cont.). We want to know what Jones must do in the light of her
violation ¬h f . Thus, we impose the constraint that the output must be consistent with
the fact that Jones does not help C = {¬hc} (i.e., C = F modulo relabelling). This
constraint gives us the argument b : ¬hc ⇒ ¬(⊤,h) expressing that given consistency
requirement ¬h, the norm (⊤,h) may not be asserted as a reason (it would output the
inconsistent ho). This argument serves as a defeater of any argument which appeals to
(⊤,h) in its reasons, in this case both c and d; see the defeat arrows in Figure 1-i. So,
that Jones ought not to tell ¬to is explained by argument a together with the fact that
arguments c and d concluding helping ho, respectively telling to, cannot be defended in
view of b. Namely, c and d both employ reasons that are inapplicable given C .

What makes this approach more transparent is the use of labels in arguments to in-
dicate different types of information (factual, obligations, constraints), the internalized
meta-reasoning about inapplicability of norms, and the argumentation framework reveal-
ing the contrastive dimension of defeasible reasoning. In Figure 1-i, the question “why
shouldn’t Jones help, despite argument c?” is answered by “since argument b attacks c
and b is not attacked.” These notions will be made precise in subsequent sections.

Example 3 (Deontic Conflict [1], Figure 1-ii). Suppose Smith has an obligation to return
a borrowed weapon to a colleague (⊤,r). Smith knows the colleague is planning to
commit a crime with this weapon and Smith is under the obligation to prevent crime
(⊤, p). Furthermore, the constraint is that Smith cannot secure both r and p. What should
Smith do? This is a deontic conflict. The knowledge base is F = /0, N = {(⊤,r),(⊤, p)},
and C = {¬(r∧ p)c}. Suppose we reason classically, e.g., p entails p∨r. The arguments
that can be constructed are presented in Figure 1-ii. The two defeating arguments, d and
e, express that given the constraints one of either two norms cannot be asserted.

Intuitively, the defensible set {a,c1,d} justifies the obligation that Smith ought to
return the weapon in Example 3, whereas {b,c2,e} does this for the prevention of crime.

3Since we do not allow for formulae with mixed labels, we can safely omit brackets w.r.t. using labels.



T
(⊤,⊤)

ID
(ϕ,ϕ)

(ϕ,ψ) ψ ⊢ γ
WO

(ϕ,γ)

(ϕ,ψ) (ϕ,γ)
AND

(ϕ,ψ ∧ γ)

(ϕ,ψ) γ ⊢ ϕ
SI

(γ,ψ)

(ϕ,ψ) (ϕ ∧ψ,γ)
CT

(ϕ,γ)

(ϕ,ψ) (γ,ψ)
OR

(ϕ ∨ γ,ψ)

Figure 2. Rules for constructing derivR,L proof-systems. The minimal set of deriv-rules is {WO,AND,SI}.

Likewise, one can justify the floating conclusion (r∨ p)o in Figure 1-ii, by arguing that
in every defensible stance either c1 or c2 is selected (cf. disjunctive response [13]). How-
ever, following a more skeptical reasoning style one can argue why r∨ p is not obligatory
since there is no single argument concluding (r∨ p)o that is selected in every defensible
stance. Defeasible reasoning by means of argumentation gives rise to various reasoning
styles, including the aforementioned. We will discuss these in Section 5.

3. Constrained Input/Output Logic

We briefly recall the basics of Constrained Input/Output logic, the systems for which
we provide argumentative characterizations. The formalism was developed by Makinson
and van der Torre [3] and is particularly suitable for normative reasoning [10]. Its central
feature is the employment of syntactic objects of the form (ϕ,ψ), called norms.

I/O logics are construed over the non-labelled propositional language L (Section 2)
and a base logic L. We use capital Greek letters ∆,Γ, ... for finite sets of L -formulae
and write

∧
∆ to denote the conjunction of elements of ∆. Let ⊢ denote the consequence

relation of the base logic L. We assume that ⊢ is reflexive (Γ,ϕ ⊢ϕ), transitive (Γ⊢ψ and
Γ′,ψ ⊢ ϕ implies Γ,Γ′ ⊢ ϕ) and monotonic (Γ ⊢ ϕ implies Γ,Γ′ ⊢ ϕ). We also assume
the presence of a conjunction ∧, for which Γ ⊢ ψ ∧ϕ iff Γ ⊢ ψ and Γ ⊢ ϕ , a negation
¬, for which Γ ⊢ ϕ iff Γ,¬ϕ ⊢, a disjunction ∨, for which Γ,ϕ1 ⊢ ψ and Γ,ϕ2 ⊢ ψ iff
Γ,ϕ1 ∨ϕ2 ⊢ ψ , and a falsum constant ⊥ for which ⊥ ⊢ ϕ and ϕ,¬ϕ ⊢ ⊥. We assume L
has an adequate sequent calculus LC, i.e., ∆ ⊢ ϕ iff the sequent ∆ ⇒ ϕ is LC-derivable.

Constrained I/O logics work with knowledge bases of the type ⟨F ,N ,C ⟩, where
F ⊆ L is the factual input, N ⊆ L ×L a normative system, and C ⊆ L a set of
constraints containing the formulae with which output must be consistent. We assume
F and C to be consistent, i.e., F ̸⊢ ⊥ and C ̸⊢ ⊥. The traditional I/O proof systems
are only available for a class of monotonic I/O logics [10]. The system is referred to as
“deriv” and contains inference rules that derive I/O pairs from other I/O pairs (Figure 2).

Definition 1. Let derivR,L be a proof-system, with R a set of rules from Table 2. Let L
be the base logic, and let N ⊆ L n. A derivation of (ϕ,ψ) ∈ derivR,L(N ) is a tree of
rule-applications of R where the leaves are either members of N or instances of T and
ID (if T, ID ∈ R), all members of N are among the leaves, and the root is (ϕ,ψ).

We say ψ is obligatory (detached) under N and F if (ϕ,ψ) ∈ derivR,L(N
′) with

F ⊢ ϕ and N ′ ⊆ N . We write ψ ∈ derivR,L(∆,N ) if (
∧

∆,ϕ) ∈ derivR,L(N ).

Paradigmatic I/O logics are characterized by the sets of rules R1 = {T,WO,SI,AND},
R2 = {OR}∪R1, R3 = R1 ∪{CT}, and R4 = R2 ∪R3. The system R1 represents a
single deontic detachment procedure which allows for weakening of the output (WO),
combining output (AND), and strengthening of the input (SI). All propositional tautolo-



gies are among the output (T). System R2 extends R1 with reasoning by cases (OR),
i.e., if both ϕ and γ generate output ψ , then ϕ ∨ γ generates ψ too. System R3 extends
R1 with reusability (CT) allowing for iterations of successive deontic detachment (cf.
chaining reasons in Example 5). Last, R4 combines R2 and R3. The above systems
may be closed under throughput (ID), i.e., input is ‘put through’ as output. We write
R+

i = Ri ∪{ID} for i ∈ {1,2,3,4}. The resulting eight systems are sound and complete
with respect to their semantic characterizations [10]. We omit the semantics here.

The above systems are still monotonic. As Example 1 and 3 demonstrate, we require
defeasible detachment. Constrained I/O logics enable this [3]. Constrained I/O logics
work with maximal families of norms N ′ ⊆ N under which the output remains consis-
tent with the constraints C . If the output is required to be consistent per se, we let C = /0.
If the output is to be consistent with the input, we take F ⊆ C (e.g., Example 2).

Definition 2. Let derivR,L be a system from Figure 2 and let K = ⟨F ,N ,C ⟩ be a
knowledge base. The set of maximal consistent families of N (maxfam) is defined as:

• maxfamR,L(K ) is the set of max-elements of {N ′ ⊆ N | for all (ϕ,ψ) ∈
derivR,L(N

′), if F ⊢ ϕ , then C ,ψ ̸⊢ ⊥}.

We define sceptic nonmonotonic inference |∼s for constrained I/O logic as follows:

• K |∼s
R,L ϕ iff ∀ N ′ ∈maxfamR,L(K ), ∃(ψ,ϕ) ∈ derivR,L(N

′) with F ⊢ ψ .

Example 4 (Example 1 cont.). Consider R3 with L a classical logic, F = {¬h}, and
N = {(⊤,h),(h, t),(¬h,¬t)}. For C = /0, we have maxfamR3,L(F ,N ,C ) = {{(⊤,h),
(h, t)},{(¬h,¬t),(⊤,h)},{(¬h,¬t),(h, t)}}. We derive (⊤,h ∧ t) ∈ derivR3,L({(⊤,h),
(h, t)}) as follows:

(⊤,h)
(⊤,h)

(h, t) ⊤∧h ⊢ h
SI

(⊤∧h, t)
CT

(⊤, t)
AND

(⊤,h∧ t)

with F ⊢ ⊤ and C ,h∧ t ̸⊢ ⊥. However, once we set the constraints to Jones’ violation,
i.e., C ′ = F , we obtain a single maxfam member N ′ = {(¬h,¬t),(h, t)} since now
C ′,h⊢⊥ whereas C ′,¬t ̸⊢ ⊥ (note that (h, t)∈N ′ cannot be triggered by F ). Given C ′,
Jones is obliged to not tell, i.e., K |∼s

R,L¬t, and is not obliged to help, i.e., K |̸∼s
R,L h.

First, maxfam sets (of arbitrary size) do not provide formal ways of pinpointing the
reasons why some norms are inapplicable, e.g., why (⊤,h) in Example 4 is inapplicable
given C =F . Second, deriv is unsuitable for generating transparent arguments, e.g., as a
certificate the derivation in Example 4 may justify that (⊤,h∧ t) is derivable, its conclu-
sion does not explain why h∧ t is obligatory. In fact, although in general a derivation is a
justification, it is not necessarily an explanation. Our calculi address both challenges.

4. Deontic Argument Calculi (DAC)

In order to generate more transparent I/O arguments, we label propositional formulae as
facts L f , obligations L o, and constraints L c (Section 2). What is more, we allow for
Boolean operations over the more complex meta-logical objects (ϕ,ψ) denoting norms.
Operations over these higher-order syntactic objects enable undercuts that explain why



Ax ⊢LC ∆i ⇒ Γi, for i ∈ { f ,o,c} Taut ⇒ (⊤,⊤) Detach ϕ f,(ϕ,ψ)⇒ ψo TP ϕ f ⇒ ϕo

∆ ⇒ ϕo

R-C
∆,(¬ϕ)c ⇒

∆,(ϕ,ψ)⇒
R-N

∆ ⇒¬(ϕ,ψ)

ϕ f ,∆ ⇒ Θ
L-CTa

ϕo,∆ ⇒ Θ

∆,ϕ f ⇒ Θ ∆′,ψ f ⇒ Θ
L-ORb

∆,∆′,(ϕ ∨ψ) f ⇒ Θ

∆ ⇒ ϕ ϕ,∆′ ⇒ Θ
Cutc

∆,∆′ ⇒ Θ

Figure 3. Rules for building DACS (Definition 3). The upper level contains initial sequents and the lower
level logical and structural rules. Side-condition (a) denotes ∆∩L n ̸= /0; (b) denotes that if TP ̸∈ S , then
∆∩L n ̸= /0 and ∆′ ∩L n ̸= /0; and (c) that ϕ ∈ L io.

certain norms should (not) be applied. For the present work, it suffices to consider nega-
tion only. Let L n = {¬(ϕ,ψ) | (ϕ,ψ) ∈ L n}. The language of norms is defined as
L n ∪L n. Furthermore, let L io = L f ∪L o ∪L c ∪L n ∪L n be the full labelled I/O
language. In L io, norms are integrated into the object-level language. We write ϕ for an
arbitrary formula of L io and write ∆i to denote that ∆i ⊆ L i for i ∈ { f ,o,c,n}.

We introduce Deontic Argument Calculi (DAC) for I/O logic. These calculi are
sequent-style calculi, which are rule-based proof systems employing syntactic objects of
the form ∆ ⇒ Γ, with ∆,Γ ⊆ L io and ‘⇒’ as a sequent arrow. We call ∆ ⇒ Γ a sequent
or an argument, where ∆ denotes the reasons for Γ (Section 2). Furthermore, ∆ is inter-
preted as a regular finite set and Γ is restricted to at most one formula. The use of regular
sets instead of multi-sets is more modular w.r.t. the base logic L. Let LC be an adequate
sequent calculus for the base logic L, then, intuitively, DAC takes labelled versions of any
LC-derivable ∆ ⇒ Γ as an initial sequent (i.e., ∆i ⇒ Γi for each i ∈ { f ,o,c}) and contains
logical- and structural rules for transforming labelled formulae of L io (see Figure 3).

Definition 3. Let DAC be the base system with the underlying logic L, containing the
rules Ax,Detach,R-C,R-N, and Cut from Figure 3. The calculus DACS extends DAC
with the set of rules S ⊆ {Taut,TP,L-OR,L-CT}, leading to 16 DAC-axiomatizations.

A DACS -derivation of ∆ ⇒ Γ is a tree whose leafs are initial sequents of DACS ,
whose root is ∆ ⇒ Γ, and whose rule-applications are instances of the rules of DACS .
We write ⊢S ∆ ⇒ Γ (resp. ⊢n

S ∆ ⇒ Γ) if ∆ ⇒ Γ is DACS -derivable (in at most n steps).

Since DACS takes labelled LC-derivable sequents as initial sequents, the rules of
LC are not part of DACS . Still, LC rules can be straightforwardly shown admissible in
DAC due to the presence of Cut. The rule Taut ensures that all propositional tautologies
are considered as output. The rule Detach is an initial explanatory argument stating that
the fact ϕ and the norm (ϕ,ψ) are reasons for the obligation ψ . Instead of deriving
pairs from other pairs (as in deriv), we keep norms as primitive reasons from a given
normative code N and only modify facts, obligations, and constraints. This gives us
some explanatory advantages (see R-C and R-N below). The rule TP corresponds to
throughput. The rule L-CT corresponds to successive detachment, expressing that a norm
may likewise be triggered by the output of some other norm (cf. Example 5). L-OR
reflects reasoning by cases over input. The side-condition on L-OR is dropped for TP ∈
S due to reasoning by cases with throughput. Cut suffices as the only structural rule.

More interesting are the rules R-C and R-N. Concerning R-C, think of a sequent
with an empty right-hand side as an argument expressing inconsistent reasons. For in-
stance, an argument ϕ f ,(ϕ,ψ),(¬ψ)c ⇒ explains that the fact ϕ and the norm (ϕ,ψ)



(which are reasons for ψ) are inconsistent whenever the output must be consistent
with ¬ψ . What is more, whenever such an argument expresses inconsistent reasons,
we know at least one of its norms is inapplicable. The rule R-N expresses this: from
ϕ f ,(ϕ,ψ),(¬ψ)c ⇒ we obtain the defeating argument ϕ f ,(¬ψ)c ⇒ ¬(ϕ,ψ). Hence,
ϕ f and (¬ψ)c are reasons for the inapplicability of the norm (ϕ,ψ). DACS sequents
will be the building blocks for the desired argumentative characterizations (Section 5).

Example 5 (Example 1 cont.). The DAC-argument d (Figure 1-i), concluding that Jones
should tell her neighbors she is coming to help, is derived through chaining (⊤,h) and
(h, t). The following DACS -derivation (left) shows this, where L-CT ∈ S :

Detach
⊤ f ,(⊤,h)⇒ ho

Detach
h f ,(h, t)⇒ to

L-CT
ho,(h, t)⇒ to

Cut
⊤ f ,(⊤,h),(h, t)⇒ to

Detach
⊤ f ,(⊤,h)⇒ ho

R-C
⊤ f ,(¬h)c,(⊤,h)⇒

R-N
⊤ f ,(¬h)c ⇒¬(⊤,h)

Given C ′ = {¬hc}, “why should Jones not tell, despite argument d?” is answered by the
(right) derivable argument b (Figure 1-i). The fact ⊤ f is omitted by a Cut with ⇒⊤ f .

Example 6 (Example 3 cont.). In the dilemma, Smith cannot both return the weapon and
prevent the crime. So, we find (⊤,r) applicable if and only if (⊤, p) is inapplicable. This
is expressed by arguments e and f . The DACS -derivations of e and f from Figure 1-ii are
obtained similarly to argument b in Example 5, using Detach twice, the DAC-admissible
rule from LC for right conjunction introduction, R-C, and R-N consecutively.

5. Argumentation and DAC-Instantiations

DAC arguments are of two types: they either give reasons for obligations, or they give
reasons for why certain norms are inapplicable, i.e., defeated. The latter arguments cap-
ture the defeasibility of normative reasoning and define the interaction among arguments.
We define DAC-induced argumentation frameworks (AFs) to model this interaction.

Definition 4. Let DACS be a calculus and K = ⟨F ,N ,C ⟩ a labelled knowledge base
(i.e., F ⊆ L f ,N ⊆ L n, and C ⊆ L c). We define AFS (K ) = ⟨Arg,Att⟩ as follows:

• ∆ ⇒ Γ ∈ Arg iff ∆ ⇒ Γ is DACS -derivable, ∆ ⊆ F ∪N ∪C , and Γ ⊆ L io;
• a defeats b, i.e., (a,b) ∈ Att iff a = ∆ ⇒¬(ϕ,ψ) and b = Γ,(ϕ,ψ)⇒ Θ.

We write Arg(Σ) to denote the set of DACS -arguments ∆ ⇒ Γ for which ∆ ⊆ Σ ⊆ L io.

For an AFS (K ) it suffices to only consider arguments relevant to K , i.e., Arg(F ∪
N ∪C ). We are interested in what combinations of arguments (extensions) can be col-
lectively accepted given an AF. For our purpose, stable extensions suffice.

Definition 5. Let ⟨Arg,Att⟩ be an AF and let E ⊆ Arg:

• E defeats an argument a ∈ Arg if there is a b ∈ E that defeats a, i.e., (b,a) ∈ Att;
• E is conflict-free if it does not defeat any of its own elements;
• E is stable if it is conflict-free and defeats all b ∈ Arg \E .



Table 1. Lemmas for ⊢S . Let ∆↓ and ϕ↓ be the set of formulae in ∆, resp. ϕ stripped from any labels.

Lemma : if then

1 ⊢S ∆,Γc
1 ⇒ Σ and C ⊢

∧
Γ1 ∃Γ2 ⊆ C : ⊢S ∆,Γc

2 ⇒ Σ and Γ2 ⊢
∧

Γ1

2 ⊢n
S ∆ ⇒¬(ϕ,ψ) ⊢n

S ∆,(ϕ,ψ)⇒
3 ∆↓ ⊢ γ↓, where ∆ ⊆ L f ∪L o ∪{(⊤,⊤)}, γ ∈ L f ∪L o

4 ⊢ γ↓, where TP /∈ S , ∆ ⊆ L f ∪{(⊤,⊤)}, γ ∈ L o

5 ⊢n
S ∆ ⇒ ⊢n

S ∆\L c ⇒ ϕo s.t. ϕ ⊢ ¬
∧
(∆∩L c)↓, where ¬

∧
/0 =df ⊥

Let Stable be the set of stable extensions of AF. We define sceptic (s), sceptic∗ (s∗), and
credulous (c) nonmonotonic inference as follows:

• AF |∼s
stable ϕ iff for each E ∈ Stable, there is an a ∈ E concluding ϕ;

• AF |∼s∗
stable ϕ iff there is an a ∈

⋂
Stable concluding ϕ;

• AF |∼c
stable ϕ iff there is a E ∈ Stable s.t. there is an a ∈ E concluding ϕ .

The use of DAC-arguments introduces nuances in sceptic inference: e.g., the distinc-
tion between s and s∗ corresponds to the discussion of floating conclusions in Section 2.

Example 7 (Example 3 cont.). Smith is in a dilemma of conflicting duties. The AF of Fig-
ure 1-ii represents this conflict, where Arg = {a,b,c1,c2,d,e} and Att= {(e,a),(e,c1),
(e,d),(d,e),(d,c2),(d,b)}. It has two stable extensions {a,c1,d} and {b,c2,e}, defend-
ing the views that Smith ought to return the weapon, resp. prevent the crime. Hence,
AF |∼c

stable ro, po, whereas AF |̸∼c
stable(r ∧ p)o, AF |̸∼s

stable ro, and AF |̸∼s
stable po. For the

floating conclusion (r∨ p)o we have AF |∼s
stable(r∨ p)o but AF |̸∼s∗

stable(r∨ p)o. (The AF
of Example 2 in Figure 1-i has one stable extension {a,b}, and so AF |∼s,s∗,c

stable(¬t)o.)

To illustrate the utility of our approach, we consider the notion of related admissi-
bility [16]. An extension E is admissible if it is conflict-free and E defeats all arguments
defeating some a ∈ E . An argument a defends b iff a = b, or there is a c s.t. a defeats c
and c defeats b, or there is a c s.t. a defends c and c defends b. A set Ea ⊆ Arg is related
admissible with topic a iff a ∈ Ea, for all b ∈ Ea, b defends a, and Ea is admissible. Thus,
a related admissible set Ea identifies the relevant arguments that justify the acceptability
of a. Let E + = {a ∈ Arg | E defeats a} and E − = {a ∈ Arg | a defeats some b ∈ E }. In
Example 3, the answer to “why is Smith obliged to prevent crime (b)?” is given by the
related admissible set Eb = {b,e} where E −

b = {d} and {d}−∩Eb = {e} explain that the
only counterargument to b is d which is defeated by e expressing that the norm (⊤,r)
used in d is inapplicable given the reasons (⊤, p) and ¬(r∧ p)c offered in e. Hence, us-
ing only undercuts enables a more refined analysis of the relevant norms explaining the
(non-)acceptability of certain arguments and obligations. The DAC approach is therefore
more precise compared to using maximal consistent families of norms in traditional I/O.

6. Metatheory: Soundness and Completeness

We demonstrate two soundness and completeness results: First, we prove adequacy be-
tween I/O proof systems and DAC (Theorem 1). Second, we prove adequacy between
constrained I/O logics and DAC-based argumentation frameworks (Theorem 2). We pro-



Table 2. Correspondence between derivR,L rules and DACS rules with the underlying logic L. For instance,
{ID,OR} ⊆ R iff {TP,L-OR} ⊆ S . The first column represents the minimal sets the systems must contain.

Rules of derivR,L {WO, AND, SI} T ID CT OR
Rules of DACS {Ax,Detach,R-C,R-N,Cut} Taut TP L-CT L-OR

vide explicit proofs of the main results. Table 1 lists several technical lemmas whose
proofs are omitted: Lemma 1 follows by the compactness of L, while Lemmas 2 to 5 are
proven by a straightforward induction on the length of the derivation.

We first show adequacy between deriv and DAC. Both systems are modular and
correspondence between the rules of these systems is defined in Table 2. In referring
to derivRL and DACS we assume this correspondence. We state the two directions of
Theorem 1 separately, we prove Lemma 7, and omit the similar proof of Lemma 6.

Lemma 6. Let Θ ⊆ L n, If ⊢S ∆ f ,Θ ⇒ ϕo, then ϕ ∈ derivR,L(∆,Θ).

Lemma 7. If (ϕ,ψ) ∈ derivR,L(Θ), then ⊢S ϕ f ,Θ ⇒ ψo.

Proof. By induction on the length of the derivR,L-derivation of (ϕ,ψ). Base case. Case
{(ϕ,ψ)}=Θ. By Detach, ⊢S ϕ f ,(ϕ,ψ)⇒ψo. Case (⊤,⊤) is derived by T with Θ= /0.
By Detach, ⊢S ⊤ f ,(⊤,⊤) ⇒ ⊤o and by Taut, ⊢S ⇒ (⊤,⊤). By Cut, ⊢S ⊤ f ⇒ ⊤o.
Case (ϕ,ϕ) is derived by ID with Θ = /0. By TP, ϕ f ⇒ ϕo.

Inductive step. To illustrate, we consider the case of CT. The other cases are similar
or straightforward. Suppose that (ϕ,ψ) is derived from (ϕ,σ) ∈ derivR,L(Θ1) and (ϕ ∧
σ ,ψ) ∈ derivR,L(Θ2) by CT, where Θ = Θ1 ∪ Θ2. By the IH, ⊢S ϕ f ,Θ1 ⇒ σo and
⊢S (ϕ ∧σ) f ,Θ2 ⇒ ψo. By R∧2, ϕ,σ ⊢ ϕ ∧σ . By Ax, ⊢S ϕ f ,σ f ⇒ (ϕ ∧σ) f and
by Cut, ϕ f ,σ f ,Θ2 ⇒ ψo. Then, if /0 ̸= Θ2, by L-CT, ⊢S ϕ f ,σo,Θ2 ⇒ ψo and by
Cut, ⊢S ϕ f ,Θ ⇒ ψo. Else, Θ2 = /0 (and hence Θ = Θ1). We consider: (i) TP ∈ S and
(ii) TP /∈ S . Ad (i). By Lemma 3.1, ϕ,σ ⊢ ψ and by Ax, ⊢S ϕo,σo ⇒ ψo. By TP,
⊢S ϕ f ⇒ ϕo and by twice Cut, ⊢S ϕ f ,Θ ⇒ ψo. Ad (ii). By Lemma 3.2, ⊢ ψ and so
σ ⊢ ψ . By Ax, ⊢S σo ⇒ ψo. By Cut, ⊢S ϕ f ,Θ ⇒ ψo.

Theorem 1. Let ∆ ⊆ L , ψ ∈ L , and Θ ⊆ L n. Then, ⊢S ∆ f ,Θ ⇒ ψo iff ψ ∈
derivR,L(∆,Θ).

Proof. (⇒) This is Lemma 6. (⇐) Suppose ψ ∈ derivR,L(∆,Θ). So, (
∧

∆,ψ) ∈
derivR,L(Θ). By Lemma 7, ⊢S (

∧
∆) f ,Θ ⇒ ψo. Since ∆ ⊢

∧
∆, ⊢S ∆ f ⇒ (

∧
∆) f by

Ax. By Cut, ⊢S ∆ f ,Θ ⇒ ψo.

We now prove our second adequacy result concerning constrained I/O logics and
DAC-instantiated argumentation frameworks.

Theorem 2. Let K = ⟨F ,N ,C ⟩ be a knowledge base. Let R be a set of deriv-rules
and S the set of corresponding DAC-rules (Table 2). Let AF = AFS (K ) = ⟨Arg,Att⟩.

1. If N ′ ∈maxfamR,L(K ) then Arg(F f ∪N ′∪C c) is stable in AF.
2. If A is stable in AF then there is a N ′ ⊆ N such that N ′ ∈ maxfamR,L(K )

for which A = Arg(F f ∪N ′∪C c).

Proof. (1) Let N ′ ∈ maxfamR,L(K ) and A = Arg(F f ∪ N ′ ∪ C c). For conflict-
freeness assume towards a contradiction that there are a = ∆ f ,Θ,Γc ⇒ ¬(ϕ,ψ) ∈ A



(where Θ ⊆ N ′) and b = Ω,(ϕ,ψ) ⇒ Σ ∈ A such that a attacks b. By Lemma 2 and
since (ϕ,ψ) ∈ N ′, we have, ∆ f ,Θ,Γc,(ϕ,ψ) ⇒∈ A . By Lemma 5, ∆ f ,Θ,(ϕ,ψ) ⇒
σo ∈A for some σ for which σ ⊢ ¬

∧
Γ. By Theorem 1, σ ∈ derivR,L(∆,Θ∪{(ϕ,ψ)}),

which contradicts the C -consistency of N ′.
For A defeats all b ∈ Arg \A let a = ∆

f
1 ,Θ1,Γ

c
1 ⇒ Σ ∈ Arg \A , where Θ1 ⊆ L n.

So, there is a (ϕ,ψ) ∈ Θ1 \N ′. By the maximal consistency of N ′, N ′ ∪{(ϕ,ψ)} is
inconsistent with C . So, there is a θ ∈ derivR,L(∆2,Θ2) for some ∆2 ⊆F and Θ2 ⊆N ′∪
{(ϕ,ψ)} such that C ⊢ ¬θ . By Theorem 1, ∆2,Θ2 ⇒ θ o ∈ Arg. Note that (ϕ,ψ) ∈ Θ2
since otherwise Θ2 ⊆ N ′ in contradiction to the consistency of N ′. By R-C and R-
N, ⊢S ∆2,Θ2 \{(ϕ,ψ)},(¬θ)c ⇒¬(ϕ,ψ). By Lemma 1, b = ∆2,Θ2 \{(ϕ,ψ)},Γc

2 ⇒
¬(ϕ,ψ) ∈ Arg for some Γ2 ⊆ C for which Γ2 ⊢ ¬θ . Note, b ∈ A and b attacks a.

(2) Let A be a stable extension of AF(K ). Let N ′ = {(ϕ,ψ) ∈ N | ¬∃a = ∆ ⇒
¬(ϕ,ψ) ∈ A }. We first show that A = Arg(F f ∪N ′∪C c):

“(⊇)” Let a ∈ Arg(F f ∪N ′ ∪C c). By the definition of N ′ there is no b ∈ A
that attacks a and since a ∈ Arg and by the stability of A , a ∈ A . “(⊆)” Let a ∈ Arg \
Arg(F f ∪N ′∪C c) with a=∆⇒ Γ. So, there is a (ϕ,ψ)∈∆ for which there is a b∈A
with b = Θ ⇒¬(ϕ,ψ). So b attacks a and by the stability of A , a /∈ A .

We now show that N ′ ∈ maxfamR,L(K ). Assume for a contradiction that N ′ is
inconsistent with C . So, there is a θ ∈ derivR,L(∆,Θ) for some ∆ ⊆ F and Θ ⊆ N ′ for
which C ⊢ ¬θ . By Theorem 1, a = ∆ f ,Θ ⇒ θ o ∈ A . Assume first that Θ = /0.

If TP /∈ S , by Lemma 3.3, ⊢ θ and thus C is inconsistent which is a contradiction.
Thus, Θ ̸= /0. If TP ∈ S then, by Lemma 3.2, ∆ ⊢ θ . But then F ∪C is inconsistent, a
contradiction and so Θ ̸= /0. So, in both cases Θ ̸= /0.

Let (ϕ,ψ) ∈ Θ. By R-N and R-C, ⊢S ∆,Θ \ {(ϕ,ψ)},(¬θ)c ⇒ ¬(ϕ,ψ). By
Lemma 1, there is a Γ ⊆ C for which b = ∆,Θ\{(ϕ,ψ)},Γc ⇒¬(ϕ,ψ) ∈ A . Since b
attacks a, this contradicts conflict-freeness of A , which shows N ′ is consistent with C .

Assume for a contradiction that there is a (ϕ,ψ)∈N \N ′ such that N ′∪{(ϕ,ψ)}
is consistent with C (i.e., N ′ is not maximal). By the definition of N ′, there is a
b = ∆ f ,Θ,Γc ⇒¬(ϕ,ψ) ∈A . By Lemma 2, ⊢S ∆ f ,Θ,(ϕ,ψ),Γc ⇒. By Lemma 5, ⊢S

∆ f ,Θ,(ϕ,ψ)⇒ σo such that σ ⊢ ¬
∧

Γ. By Theorem 1, σ ∈ derivR,L(∆,Θ∪{(ϕ,ψ)})
which shows that N ′ ∪{(ϕ,ψ)} is inconsistent with C (note that Γ ⊆ C ). This com-
pletes our proof since it shows that N ′ ∈maxfamR,L(K ).

Corollary 1. Let K be a knowledge base, R a set of deriv-rules, and S a set of corre-
sponding DXC-rules (Table 2). For i ∈ {s,c}, AFS (K ) |∼i

stable ϕ iff K |∼i
R,L ϕ .

7. Related Work and Conclusion

In [14], a sequent-style system for monotonic I/O logics without constraints is presented.
It utilizes a correspondence between I/O and conditional logics. In [15] proof systems
for constrained I/O logic are developed, where modalities for ‘input’ and ‘output’ allow
for meta-reasoning in the object language. DAC uses labels instead of modalities and ad-
ditionally allows for meta-reasoning about the (in)applicability of norms. In [9], sequent
argumentation is used for defeasible reasoning with deontic logic. Norms are modelled
with material implications which allows for less fine-tuning of norms than in DAC.



In [5,6,18] argumentative characterizations of normative systems employing prior-
ity orderings are studied. Their language is restricted to literals only, whereas our ap-
proach adopts a full propositional language. In [6,18] arguments consist only of (sets of)
norms. In future work, we aim to incorporate priority and preference reasoning in the
more transparent context of DAC. Moreover, the I/O formalism has other applications
including reasoning with consistency checks, permissions, and constitutive norms [8,17].
In particular, we aim to exploit the internalization of meta-reasoning in DAC to charac-
terize various types of permission [17], for instance, negative permissions as defined in
terms of the absence of applicable norms to the contrary.

An alternative approach to model reasoning with norms is to instantiate ASPIC+

[2] with conditionals representing norms and a defeasible modus ponens rule. This ap-
proach leads to a “greedier” style of reasoning than our approach. Consider F = /0 and
N = {(⊤, p),(p,q),(⊤,¬q)}. An ASPIC+-based approach yields the obligation to p
with stable semantics since the argument for p from (⊤, p) is unchallenged. In contrast,
our approach generates the argument (⊤,¬q),(p,q)⇒¬(⊤, p) concluding the inappli-
cability of (⊤, p). The latter is in line with the I/O approach to normative reasoning.

We illustrated our approach with the notion of related admissibility [16]. For future
work, we will investigate other argumentative approaches to explanation and how these
can be used in the context of DAC, e.g., explicit reasoning about the inapplicability of
norms in DAC can be harnessed to explain the non-acceptability of arguments [19].

Last, explanations typically occur in dialogues, through an exchange of reasons,
questions, and arguments [20]. Consequently, explanations are often tailored to the back-
ground of the explainee. We will adopt our approach to dialogue models in future work.

In conclusion, in normative reasoning contexts one is not just interested in whether
a specific obligation holds, but also in why it holds despite other norms to the contrary.
To address this challenge, we developed Deontic Argument Calculi (DAC) which are
rule-based proof systems that use labels to facilitate transparency and incorporate meta-
normative reasoning with norms into the object language.
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