
On Normative Reinforcement Learning
via Safe Reinforcement Learning⋆

Emery A. Neufeld[0000−0001−5998−3273], Ezio Bartocci[0000−0002−8004−6601], and
Agata Ciabattoni[0000−0001−6947−8772]

TU Wien, Vienna, Austria
{emeric.neufeld,ezio.bartocci,agata.ciabattoni}@tuwien.ac.at

Abstract. Reinforcement learning (RL) has proven a successful tech-
nique for teaching autonomous agents goal-directed behaviour. As RL
agents further integrate with our society, they must learn to comply with
ethical, social, or legal norms. Defeasible deontic logics are natural for-
mal frameworks to specify and reason about such norms in a transparent
way. However, their effective and efficient integration in RL agents re-
mains an open problem. On the other hand, linear temporal logic (LTL)
has been successfully employed to synthesize RL policies satisfying, e.g.,
safety requirements. In this paper, we investigate the extent to which the
established machinery for safe reinforcement learning can be leveraged
for directing normative behaviour for RL agents. We analyze some of
the difficulties that arise from attempting to represent norms with LTL,
provide an algorithm for synthesizing LTL specifications from certain
normative systems, and analyze its power and limits with a case study.

1 Introduction

As artificial intelligence (AI) continues to pervade human society, more and more
societal roles are prescribed to autonomous agents, and the demand for efficient,
adaptable, and safe technology grows. Reinforcement learning (RL) – a machine
learning technique that teaches agents optimal policies by assigning rewards
and punishments to specific behaviours – has been successfully employed in the
training of autonomous agents that exhibit these characteristics. Simultaneously,
interest in agents that conform to legal, ethical, and social norms has increased
as well, and RL has also been employed for these purposes (see, e.g., [32, 22, 26]).
However, existing approaches to learning compliant behaviour rely on directly
punishing individual illegal or unethical behaviours or rewarding praiseworthy
ones. This approach is not scalable; in large environments and complex normative
systems, specifying non-compliant behaviours individually might not be feasible.
Without a way to identify rules and patterns governing compliant behaviour,
the comprehensive numerical assignment of rewards and punishments to specific
events can be extremely tedious (if possible at all), not to mention lacking in
understandability and therefore transparency.

⋆ This work was supported by the DC-RES run by the TU Wien’s Faculty of Infor-
matics and the FH-Technikum Wien and by the project WWTF MA16-028.

2 E. A. Neufeld et al.

Normative systems are best represented by deontic logics, which capture the
essential logical features of obligations and related concepts. Many such logics
have been introduced; among them, Defeasible Deontic Logic (DDL) provides a
computationally feasible yet expressive framework to specify and reason about
norms in a modular and transparent way [14, 15].

In [20, 21] the authors use DDL (and its theorem prover SPINdle [19]) in
combination with RL; they develop a normative supervisor that prevents a RL
agent from selecting actions that would lead to an immediate violation of certain
norms. Norms and the current state of the agent’s environment are encoded as
DDL rules, and a theorem prover is used to derive a set of compliant actions
(or, if none exists, a set of ‘lesser evil’ actions). However, the use of a theorem
prover introduces computational overhead during the enactment of the agent’s
policy while the complete decoupling of the policy from the normative reasoning
prevents the agent from thinking ahead and taking steps to avoid undesirable
situations. A better integration of RL and DDL (and deontic logics in general)
seems out of the reach, with current tools.

Meanwhile, in the last decade there has been significant progress with the
use of linear temporal logic (LTL) for synthesizing RL policies under safety
constraints, e.g. [27, 2, 18, 16, 31]. For instance, an emerging approach in safe RL
is the use of shielding [2, 18], which involves synthesizing from a requirement
expressed in the safety fragment of LTL a reactive system called a shield that
lets the agent act freely, provided safety specifications are not violated.

The main question we investigate in this paper is whether the established
machinery for safe reinforcement learning can be used for directing normative
behaviour for RL agents, which amounts to understanding which normative sys-
tems can be represented in LTL and how. This has been a debated topic in
the literature, where diverging opinions can be found (e.g. [10, 12, 23, 1]). Our
answer is affirmative, albeit with qualifications. We first clarify what we mean
by “representing norms with LTL” and discuss two different approaches: (i) ex-
plicit/syntactic representation (constructing an LTL operator that directly rep-
resents an obligation in the way deontic logic does) that matches the approach
in [10], and (ii) implicit/semantic representation (describing non-violating pat-
terns of behaviour with LTL formulae) which matches the approach in [1]. We
prove the impossibility of the former, and elucidate the limitations on the latter.

We propose an algorithm to synthesize in the safety fragment of LTL implicit
representations of normative systems from the rule-based representations of these
systems in a defeasible deontic logic. The algorithm works in the presence of
defeasible mechanisms (e.g. prioritized norms) and constitutive norms [4], but
encounters problems due to imperfect accounting for actions, and obligations
which come into force when another obligation is violated (contrary-to-duty
obligations). Our findings are tested on the Merchant – an RL agent playing a
resource-collecting game we created. The game is enriched with two normative
systems (simulating “ethical” rules) that we synthesize in LTL; the behaviour
complying with these specifications is compared with the behaviour elicited by
the normative supervisor of [20, 21], which can handle contrary-to-duty norms.

On Normative Reinforcement Learning via Safe Reinforcement Learning 3

2 Preliminaries

2.1 Safe Reinforcement Learning with LTL

Linear Temporal Logic (LTL) [24] extends classical propositional logic with the
temporal operators Xϕ (“ϕ next”) and ϕ Uψ (“ϕ until ψ”); using them we can
define Fϕ (“eventually ϕ”) as Fϕ ≡ ⊤Uϕ, and Gϕ (“always ϕ”) as Gϕ ≡ ¬F¬ϕ.

LTL formulas are specified over a set of atomic propositions AP , and the
semantics are defined with respect to a set of states S and a labelling function
L : S → 2AP . In particular, the satisfiability of an LTL formula is defined over
paths, or infinite sequences of states σ = s0, s1, s2,

For the semantics, we introduce the notation σ[i] = si and σ[i..] = si, si+1,
The semantics for the propositional part is defined as usual: σ ⊨ p iff p ∈ L(σ[0]);
σ ⊨ ¬ϕ iff σ ⊭ ϕ; and σ ⊨ ϕ ∧ ψ iff σ ⊨ ϕ and σ ⊨ ψ. For the primitive temporal
operators: σ ⊨ Xϕ iff σ[1..] ⊨ ϕ, and σ ⊨ ϕ Uψ iff ∃j ≥ 0 such that σ[j..] ⊨ ψ
and for all 0 ≤ i < j, σ[i..] ⊨ ϕ.

LTL is a popular tool for system specification, and has been used exten-
sively for specifying safety-related properties. The fragment of LTL used for this
purpose is the U -free subset of LTL formulas (that is, formulas using only the
operators X, G, and F), known as the safety fragment.

Techniques for generating control policies for reinforcement learning (RL)
agents which maximize the probability of satisfying a given LTL formula have
been extensively studied, and used, e.g., to synthesize policies which operate
with certain safety properties [27, 2, 18, 16, 31]. This is done within the context
of a labelled Markov Decision Process (MDP):

Definition 1 (Labelled MDP). A labelled MDP is a tuple ⟨S,A, P,R,L⟩,
where S is a set of states, A is a set of actions, P : S × A × S → [0, 1] is
a probability function that gives the probability P (s, a, s′) of transitioning from
state s to state s′ after performing action a, R : S×A→ R is a reward function
over states and actions, and L : S → 2AP is a labelling function.

The goal of RL is to find a policy π : S → A which designates optimal behaviour
for the agent. When learning within a labelled MDP to satisfy an LTL specifica-
tion ϕ, this involves learning a policy π∗ that generates a path σπ∗

= s0, s1, s2, ...
such that σπ∗

⊨ ϕ with maximal probability.
As [9] notes, the standard approach to learning policies satisfying an LTL

formula ϕ is to translate it into a deterministic or semi-deterministic automaton
(many different algorithms for this exist, e.g. [7, 29]) that takes the label L(si) ⊆
AP of each state si the agent enters as its input alphabet. The next step is to
relate the automaton to a given MDP (usually as a product MDP with the
state space S× = S × Q, where Q is the set of automaton states), and then
synthesize a policy that maximizes the probability of hitting the set of accepting
end states corresponding to the automaton’s acceptance conditions. Another
approach is shielding [2, 18]. From a simplified MDP abstracted from the states
of the environment and the behaviour of “adversaries” within the environment,
action valuations can be computed for each state, giving the probability that

4 E. A. Neufeld et al.

the agent will violate the specification from that state [18]. A shield can then be
computed that will prevent the agent from taking actions with high probability
of leading to a violation. The shield can intervene before (pre-shielding) or after
(post-shielding) the RL agent chooses an action. In the former case, the shield
provides the agent only with the safe actions, while in the latter case the shield
monitors the actions chosen by the agent and corrects them only when their
actuation would cause a safety violation.

2.2 Norms and Normative Reasoning

A normative system is a set of norms. We consider two kinds of norms, which
both present as conditional rules: regulative and constitutive norms. The former
describe obligations, prohibitions and permissions that apply in certain contexts.
The latter take the form “X counts as Y in context C”, or C(X,Y |C), for some
concepts X,Y [4]; they are used to define what Searle [28] calls institutional facts
from brute (or other institutional) facts.

Deontic logic is a popular tool for formalizing normative reasoning; most de-
ontic logics extend classical logic with deontic operators. The primitive operator
is typically taken to be obligation; we will work with dyadic obligations of the
form O(p|q), which means “when q is true, p is obligatory”. Generally, when we
have q ∧ O(p|q), we can infer the unary obligation O(p), or “p is obligatory”
(this is called factual detachment). Prohibitions can be defined as obligations
of a negative statement (that is F(p|q) := O(¬p|q)) and weak permission as
the dual operator to obligation (that is, Pw(p|q) := ¬O(¬p|q)). As the term
weak permission suggests, many deontic logics also possess a notion of strong
permission Ps, which acts as an exception to an obligation or prohibition.

For the sake of simplicity, instead of entire normative systems, we discuss
only single regulative norms, for now. Notice there is no inherent temporal di-
mension to the obligation operator; we will take all obligations to be what are
called maintenance obligations in [13]. The violation condition for a maintenance
obligation O(p|q) is that there is a point in time in which O(p)∧¬p is true. If a
path contains no such points in time we call that path compliant. We formalize
below properties of obligations and compliance to them in the context of LTL
semantics, with respect to a set of paths Σ.

Definition 2 (Violation & Compliance). A state si (i ∈ N) violates O(p|q)
if q is true at si but p is not. A path σ ∈ Σ violates O(p|q) (σ ⊭compl O(p|q)) if it
contains a violating state; σ complies with O(p|q) (σ ⊨compl O(p|q)) otherwise.

Note that the negation of an obligation – “p is not obligatory” or “¬p is permit-
ted” – cannot be violated; in other words, permissions are not violable.

Defeasible Deontic Logic (DDL) Introduced in [15], DDL allows reasoning
with literals (propositional atoms p and their negations ¬p), modal literals (liter-
als with a modality, e.g. O(p)), and rules defined over them. Rules can be strict
(→), defeasible (⇒), or defeaters (⇝). For strict rules, the consequent always

On Normative Reinforcement Learning via Safe Reinforcement Learning 5

follows from the antecedent, while the consequents of defeasible rules follow from
the antecedent, unless there is evidence to the contrary. This evidence can come
in the form of conflicting rules or defeaters, which prevent a conclusion from be-
ing reached by a defeasible rule. Rules, representing norms, can be constitutive
or regulative. For example, if we have a dyadic obligation O(p|q) that we want
to hold defeasibly, we would write q ⇒O p.

A defeasible theory [11] is a collection of facts F , together with a normative
system defined in the language above (consisting of sets of constitutive and
regulative rules) and a superiority relation over conflicting rules.

The theorem prover for DDL, SPINdle [19], takes a defeasible theory as input
and outputs a set of literals tagged to indicate whether they are provable or
not. The derived conclusions can be negative or positive, definite or defeasible,
factual or deontic. We only reference defeasible conclusions in this paper: the
tag +∂∗ indicates a defeasibly provable conclusion, which is not refuted by any
facts or conflicting rules, and is implied by some undefeated rule; meanwhile,
−∂∗ indicates defeasibly refutable conclusions which are conclusions for which
their complemented literal is defeasibly provable, or an exhaustive search for a
constructive proof for the literal fails. For factual conclusions, ∗ := C; for deontic
conclusions, ∗ := O. For example, if we can conclude defeasibly that O(p), we
would get +∂Op. We say that a violation has been committed when we can prove
+∂Op,−∂Cp (that is, we can prove O(p) but cannot prove p).

3 Representing norms in LTL

Whether or not norms can be represented with LTL has been a matter of contro-
versy. The precise meaning of “representing norms” has an impact on the nature
of the question. There are two distinct approaches that we consider here, which
we refer to as explicit representation and implicit representation of norms. By
explicit representation, we mean the construction of an LTL operator that be-
haves as an obligation; [10, 12] conjecture that this cannot be done. With implicit
representation we refer to the formal specification of non-violating paths; this is
the idea put forth, e.g., in [1], arguing against the conjecture of [10].

Below, we will discuss why the former approach is impossible and introduce
a synthesis algorithm for the latter, while pointing out its intrinsic limits.

3.1 Explicit Representation

The case study in [10] shows why translating the statement “it is obligatory
that p” as G(p) := “p is always true” is problematic – in part because the dual
operator of obligation, weak permission, is semantically incompatible with the
dual operator of G (i.e., F , or “eventually”) – but we will show that any such
translation will prove so. When we talk about explicit representation of norms,
we are referring to the following claim:
Conjecture 1. (1) we can construct an LTL operator O(p, q) that directly rep-
resents the proposition O(p|q) (that is, “p is obligatory when q”), such that (2)
for any path σ ∈ Σ, σ ⊨compl O(p|q) if and only if σ ⊨ O(p, q).

6 E. A. Neufeld et al.

As it turns out, this conjecture is quite unreasonable, specifically if we make
the sensible assumption that within the environment we are working in, there
exists some obligation with which we can comply. More formally (by OAP we
denote the set of all obligations defined over the atomic propositions in AP):

Property 1. For a set AP associated with a labelled MDP, there exists an obli-
gation O(p|q) ∈ OAP such that there exists a σ ∈ Σ such that σ ⊨compl O(p|q).

Theorem 1. If Property 1 holds, Conjecture 1 must be false.

Proof. Suppose both Property 1 and Conjecture 1 hold. By Property 1 there is an
obligation O(p|q) for which there is a σ ∈ Σ such that σ ⊨compl O(p|q). Then by
Conjecture 1(1), there is an LTL operator O such that σ ⊨ O(p, q). Since we are
directly representing “p is obligatory when q” with O(p, q), its negation ¬O(p, q)
should represent “p is not obligatory when q”. However σ ⊨compl ¬O(p|q), as this
formula (which is a permission) cannot be violated. Thus, σ ⊨ ¬O(p, q) must
hold. Hence σ ⊨ O(p, q) ∧ ¬O(p, q), and so σ ⊨ ⊥, a contradiction. ⊓⊔

Remark 1. In the case of compliance (which differs from truth), σ ⊨compl ϕ
does not imply σ ⊭compl ¬ϕ. It cannot be true simultaneously that O(p|q) and
Pw(¬p|q), but we can find a path that complies with both norms posed individ-
ually, because the latter cannot, in fact, be violated.

Since point (2) of Conjecture 1 is crucial to this exercise, we can conclude
that it is point (1) that should be abandoned. We discuss this in the next section.

3.2 Implicit Representation

We now turn to what we call the implicit representation of norms in LTL. To
do so, we consider the notion of a compliance specification:

Definition 3 (Compliance Specification). A compliance specification is an
LTL formula ϕOp|q such that for a path σ ∈ Σ, σ ⊨compl O(p|q) iff σ ⊨ ϕOp|q.
A compliance specification ϕNS for a normative system NS is an LTL formula
such that σ ⊨ ϕNS iff no norm in NS is violated.

With this definition in mind, our revised claim (extended to entire normative
systems) is this:

Conjecture 2. (1) There is a compliance specification for any obligation, and (2)
there is a compliance specification for any normative system NS.

Remark 2. The second part of the claim is relative to the limitations in the
expressive power of LTL, which cannot specify every path (see, e.g., [17]).
There are some immediate problems with this approach. Perhaps the most obvi-
ous is the question of how we get ϕNS from a normative system. In the easy case
of a single obligation O(p|q), the appropriate translation is ϕOp|q := G(q → p),
or “always p if q”. Note that this is different from the translation of the norm
O(p) to G(p), as discussed in [10]; G(q → p) is not meant to stand in for “p

On Normative Reinforcement Learning via Safe Reinforcement Learning 7

is obligatory when q”; rather, it characterizes all paths that comply with the
obligation. This is essentially the approach taken in [1].

Another issue is the inherent defeasibility of normative systems, which might
appear while, e.g., dealing with (and resolving) conflict between norms, and in
the presence of strong permissions. The latter are often characterized as condi-
tional exceptions to obligations. For the former, various mechanisms for priori-
tizing some obligations over others (e.g., the superiority relation in [14] and the
hierarchy of norms from [3]) are common and similar to the case with strong per-
mission, the lower priority norm will be suspended temporarily while the other
norm is in force.

LTL does not allow for defeasibility in the specifications expressed; however,
we can encode exceptions into the conditions under which the norms are in force,
as was done in the second formalization considered in [10]. For example, instead
of an obligation O(p|⊤) with a strong permission Ps(¬p|q), we could use a single
obligation O(p|¬q). This approach involves taking into account all exceptions to
a norm when specifying it, which might be tedious, but not impossible. The task
of specifying ϕNS , however, becomes more difficult as the normative system of in-
terest becomes more complex. Below, we provide a framework for accomplishing
this automatically.

Synthesis of Specifications. Given an environment modelled as a labelled
MDP and a normative system formalized with deontic logic, we introduce a
brute force algorithm for synthesizing compliance specifications expressed as
LTL formulas within the safety fragment. The specifications could then be used
to synthesize compliant policies with a safe RL technique such as shielding [2,
18]. As it bases its output on Defeasible Deontic Logic (DDL) conclusions, the
algorithm has a defeasibility mechanism built in, along with the capability to
take constitutive norms into account while reasoning. The algorithm takes a
normative system NS expressed in DDL1 and set of atomic propositions AP
associated with the labelling function of a labelled MDP. NS, Γ represents the
defeasible theory created when we use Γ ⊆ AP as the set of facts F and the
norms from NS as rules.
The algorithm checks whether a state violates NS, which happens when we
can prove O(p) (i.e., +∂Op in DDL notation) and cannot prove p (i.e. −∂Cp);
if it does, the state is added to badStates. From the output set badStates, we
can create an LTL compliance specification insisting that the agent stays out of
states characterized by these sets of labels:

Φ :=
∧

Γ∈badStates

G(¬
∧
p∈Γ

p) (1)

Theorem 2. For any labelled MDP with a set of states S associated with a
labelling function L : S → 2AP , Φ is a compliance specification for NS (provided
NS references only atoms from AP or defined from them via constitutive norms).
1 Any defeasible deontic logic equipped with a theorem prover could in theory be used.

8 E. A. Neufeld et al.

input : AP, NS
output: badStates
begin

badStates← ∅;
for Γ ∈ 2AP do

Compute obliged = {p|NS, Γ ⊢ +∂Op};
if ∃p ∈ obliged s.t. NS, Γ ⊢ −∂Cp then

badStates.add(Γ);
end

end
return badStates

end
Algorithm 1: FindBadStates

Proof. Suppose that a path σ = s0, s1, ... is not compliant with all norms in NS;
i.e., there is an si such that it is the case that O(p) ∧ ¬p for a O(p); in this
case, we will have NS,L(si) ⊢ +∂Op,−∂Cp. So p ∈ obliged in Algorithm 1, and
since NS,L(si) ⊢ −∂Cp, L(si) ∈ badStates. Then Φ is a conjunct that includes
G(¬

∧
q∈L(si)

q). Then, since at si it is the case that
∧

q∈L(si)
q, σ does not satisfy

Φ. Suppose then that Φ is not satisfied by σ = s0, s1, Then there is some si
such that L(si) ∈ badStates, which means that for some p, NS,L(si) ⊢ +∂Op,
but NS,L(si) ⊢ −∂Cp. So there is a violation in σ. ⊓⊔

The above algorithm however does not account for norms over actions. Norma-
tive systems regularly reference actions or events that cannot be captured by
state labels – which is all we have access to in the context of a labelled MDP.
As a result, there could be states in badStates that can actually be compliant
provided the correct action is taken, and states not in badStates that could re-
sult in a violation if the wrong action is taken. E.g., if we had a state where
red_light was true (indicating that we are at a red light) and we had an obliga-
tion O(stop|red_light), this would have ended up in badStates after Algorithm 1
because we could not have proven stop even though we can prove O(stop); al-
ternatively, if we are in a state where driving is true, and we have a prohibition
F(drink|driving), this would not have ended up in badStates; however, if we
perform action drink while in this state, we are violating the prohibition.

To remedy this, we introduce Algorithm 2. We reference something new there:
transitions, which are ordered triples tr := (tract, trinit, trnext), where tract
is an action label, trinit an “initial signature” (an expression containing only
atoms in AP that describes the initial conditions under which the action can be
completed), and trnext a “next signature” (an expression containing only atoms
in AP that describes the conditions resulting from performing the action). The
algorithm will output a modified set of badStates, as well as two new sets:
mandatoryActs and prohibitedActs whose elements are pairs of Γ ∈ 2AP and
some tr from transitions.

This algorithm does two things. It constructs a set mandatoryActs which
contains actions that, if performed, actually constitute compliance despite the

On Normative Reinforcement Learning via Safe Reinforcement Learning 9

input : AP, transitions, NS, badStates
output: badStates, mandatoryActs, prohibitedActs
begin

mandatoryActs← ⟨ , ⟩;
prohibitedActs← ⟨ , ⟩;
for Γ ∈ 2AP do

for tr ∈ transitions do
Compute obliged = {p|NS, Γ ∪ {tract} ⊢ +∂Op};
if ∀p ∈ obliged s.t. NS, Γ ∪ {tract} ⊢ +∂Cp & Γ ∈ badStates then

badStates.remove(Γ);
mandatoryActs.add(⟨Γ, tr⟩);

end
else

if ∃p ∈ obliged s.t. Γ ∪ {tract} ⊢ −∂Cp & Γ /∈ badStates then
prohibitedActs.add(⟨Γ, tr⟩);

end
end

end
end
return badStates, mandatoryActs, prohibitedActs

end
Algorithm 2: ClassifyActions

fact that the state the action is performed in was in badStates. Algorithm 2
removes this state from badStates and adds it to mandatoryActs. We create the
following specification for mandatoryActs:∧

⟨Γ,tr⟩∈mandatoryActs

G(
∧
Γ → (trinit ∧X(trnext))) (2)

The second thing the algorithm does is construct prohibitedActs. These are
actions that, if performed in an otherwise compliant state, will result in non-
compliance. For these we construct the following specification:∧

⟨Γ,tr⟩∈prohibitedActs

G(
∧
Γ → ¬(trinit ∧X(trnext))) (3)

Though we have presented Algorithms 1 and 2 separately for didactic pur-
poses, they can be compiled into a single process (and we implemented them
this way, see footnote 2).

Remark 3. Since DDL conclusions can be computed in time linear with respect
to the size of the theory [14] (which does not change), Algorithms 1 and 2 have
both an exponential time complexity. However, despite their high complexity,
these algorithms need only be executed once, before training.

Potential issues. We discuss below two limitations of our algorithms, which
will be demonstrated in Section 4.

10 E. A. Neufeld et al.

(a) Imperfect translation from actions to state transitions. We can-
not get the same guarantees from Algorithm 2 that we got for Algorithm 1;
though we will be able to account for all non-compliant states and courses of
action, whether or not we can effectively represent those actions will depend on
the setting. Indeed, we might not be able to describe all state transitions asso-
ciated with an action as a single formula, and even if we manage to, we might
end up describing other actions that cause the same transition. This can happen
when different actions can lead to the same state. We demonstrate this issue in
the case study we present in Section 4.1 (the extension).

Setting aside this potential issue with actions, the above algorithms synthe-
size compliance specifications for most normative systems containing conflicting
norms, strong permission, and constitutive norms; however, another problem
remains: (b) Handling Contrary-to-duty Obligations (CTD). These are
obligations which come into force when another obligation is violated. One of the
classic CTD scenarios from the deontic logic literature is the “gentle murder” [8];
the scenario consists of two obligations: “you ought not kill” and “if you kill, you
ought to kill gently”. That is: ideally, we never kill, but if we must, we should do
it gently. With this scenario in mind, we revisit the concept of compliance and
give the following definitions inspired by the discussion in [10] and its addressal
in [1], and extend Def. 2 to entire normative systems.

Definition 4. A path σ is fully compliant with a normative system NS if for
every obligation O ∈ NS, σ ⊨compl O. σ is weakly compliant with NS if for
every obligation O1 := O(p|q) ∈ NS such that σ ⊭compl O1, there exists another
obligation O2 := O(r|s) such that s↔ ¬p ∧ q and σ ⊨compl O2.

In the above definition, O1 is a primary obligation that is violated, and O2 is
the associated CTD obligation. Note also that if a path is fully compliant, it
is weakly compliant as well. So we have two choices for specifying compliance
– full or weak. However, both fail to capture the subtleties of CTD reasoning.
The below propositions apply to normative systems with CTDs (and without
obligations conflicting with the primary and contrary-to-duty obligations):

Proposition 1. Given a normative system NS with primary obligation O1 :=
O(p|q) ∈ NS and CTD obligation O2 := O(r|s) (where s ↔ ¬p ∧ q), the full
compliance specification ϕNS for NS is semantically equivalent to the full com-
pliance specification ϕNS′ for NS′ = NS \ {O2}.
Proof. Suppose σ ⊨ ϕNS ; then since O2 is not triggered at any point in σ, its
removal cannot trigger any extant norms in NS′. So since for all Oi ∈ NS′,
σ ⊨compl Oi, σ ⊨ ϕNS′ . For the converse direction assume σ ⊨ ϕNS′ ; for every
Oi ∈ NS′, σ ⊨compl Oi. Since σ ⊨compl O1 it is never the case that q ∧¬p. Then
since s ↔ ¬p ∧ q, it is never the case that s, and O2 is never triggered, so it
cannot be violated. So σ complies with every obligation in NS and σ ⊨ ϕNS . ⊓⊔
Proposition 1 makes intuitive sense; if we want full compliance with the “gentle
murder” scenario, for instance, we will simply not murder at all, making the
obligation to murder gently superfluous. In other words, there is no point in
specifying O2. We run into a similar case when we look at weak compliance.

On Normative Reinforcement Learning via Safe Reinforcement Learning 11

Proposition 2. Take NS, O1 and O2 as in Proposition 1 and assume in addi-
tion that there are no norms in NS that are triggered by O(p). Then the weak
compliance specification ϕNS for NS is semantically equivalent to the weak com-
pliance specification ϕNS′ for NS′ = NS \ {O1}.

Proof. Suppose σ ⊨ ϕNS ; since O1 is not a strong permission, its removal does
not trigger any extant obligations in NS′. So σ ⊨ ϕNS′ . Then assume σ ⊨ ϕNS′ .
As there are no obligations in NS (or NS′) that depend on the triggering of
O(p), the only obligations that may be violated in NS have associated CTD
obligations that are complied with; this includes O1, as O2 (which is in NS′)
was not violated. So σ ⊨ ϕNS . ⊓⊔

In other words, with the exception of the specific case where some obligation
is only triggered when the primary obligation is, the primary obligation has no
effect when we are discussing weak compliance.

If a normative system does have CTD obligations, our algorithms will simply
return LTL formulas that specify adherence to the primary obligation (i.e. it
only considers full compliance). Alternatively, as implied by Prop. 2 we in some
cases can remove the primary obligation to model weak compliance. The use
of weak compliance works in the legal compensation-based scenario discussed
in [10] (for which full and weak compliance are both represented in LTL in [1]),
but not in the case of the moral imperative in [8]. The statement “if you kill,
you ought to kill gently” should not give us license to murder, so long as we do
so gently.

4 Case Study: the Merchant

We present a case study that illustrates the use of the synthesis algorithms
and their discussed limitations, which stem from the use of LTL to implicitly
represent norms and their deployment in conjunction with RL agents.

The case study is a simple game2 we have created, where the agent, a mer-
chant, must travel through a forest (divided into cells, where each cell can contain
rocks, ore, trees, or wood) and extract and collect resources (wood extracted from
trees, or ore from rocks). The goal is to make it to the market on the other side
of the map with items to sell. There are dangerous areas where the agent will be
attacked by bandits, and the agent has three options: it can fight (which ends
the attack), negotiate (which entails giving the bandits the agent’s inventory,
and also ends the attack), or try to escape (which has a high risk of failing; in
the case of failure, the agent receives damage, and the attack continues). The
agent has a total of seven actions available to it: moving north, south, east, or
west, fighting, extracting resources (extract), picking up resources (pickup), and
unloading its inventory (unload). The agent is not allowed to backtrack; if it
leaves a cell, it is not allowed to return to it in the next move.

2 An implementation of Algorithms 1 and 2 can be found here: https://github.com/
lexeree/normative-player-characters

12 E. A. Neufeld et al.

We employ a fully deterministic version of this environment (the probability
of escape failing is 1) with the layout depicted in Fig. 1(a). The merchant is
rewarded whenever it extracts or picks up resources, and then once more at the
end when it delivers them to the market – we train the RL agent based on these
rewards. The optimal behaviour this results in is pictured in Fig. 1(b).

�(���
�3�

�)�

�(���
�3�

�)� �(���
�3�

�(���
�3�

�(���
�3�

�(���
�3�

(a) (b)

(E) – Extract, (P) – Pickup, (F) – Fight!

Fig. 1. (a) shows the ‘Merchant’ environment. Dangerous areas are red, and areas with
resources are green. (b) shows the optimal path through the environment.

In our merchant environment MDP, states are labelled with where the agent
is, its immediate surroundings, and what it has in its inventory. In other words, a
state can be given the following labels inAP : “attacked”, “has_{wood, ore}”, “{at,
north, south, east, west}_{tree, wood, rock, ore, danger}”, and “at_collected”,
which refers to cells from which the agent has extracted and picked up resources;
this label is only true after the agent has picked up a resource, and before it moves
on to the next cell. States where, e.g., at_tree holds are states where the agent is
in the same cell as a tree; if the action extract is performed when at_tree holds,
then at_wood holds in the next state. Similarly, when pickup is performed while
at_wood, at_collected holds in the next state and the agent has_wood. Only
one tree/wood or rock/ore can be in each cell.

Utilizing these labels and the available actions, we construct below two nor-
mative systems, simulating “ethical” norms. Algorithms 1 and 2 are used to gen-
erate LTL specifications for these systems. Our environment can be modelled
as a labelled MDP, so we are able to do regular model-free RL (in particu-
lar, Q-learning [30]), or use techniques for learning policies constrained by LTL
specifications, such as shielding [2, 18] or LCRL [16]. We compare3 the specified
compliant behaviours with the behaviour elicited by an existing framework (the
normative supervisor in [20], which uses a mechanism similar to pre-shielding
that filters out undesirable actions from the agent’s arsenal).

4.1 The Environmentally Friendly Merchant

This normative system includes constitutive norms and strong permissions. It
forces the merchant to follow the “ethical” behaviour of being environmentally-
3 The LTL specifications have not been implemented as shields, since the shielding

tool TEMPEST [25] is still under development. We instead manually chose optimal
paths from among those paths obeying the compliance specifications.

On Normative Reinforcement Learning via Safe Reinforcement Learning 13

friendly, that is, not doing something explicitly harmful to the environment
(⇒C env, in DDL), which translates into the norm O(env|⊤) (⇒O env in DDL);
Deforestation is an activity considered not environmentally friendly, leading
to the constitutive norm C(deforest,¬env|⊤) (deforest →C ¬env). For now
we will look at an initial normative system that asserts that collecting wood
counts as deforestation, i.e. C(pickup, deforest|at_wood) (at_wood, pickup→C

deforest). However, an exception is made; the agent is allowed to pick up wood
if it does not already have any wood in its inventory, Ps(pickup|¬has_wood)
(¬has_wood ⇒P pickup). We will know that the agent obeyed these norms as
well as engaged in optimal behaviour if there is exactly one piece of wood in the
agent’s inventory when it reaches the marketplace.

We will need to translate the action pickup into a state transition in order to
synthesize a compliance specification with Algorithms 1 and 2; we use at_wood
as the initial condition and at_collected as the next condition and get

G(at_wood ∧ has_wood → ¬(at_wood ∧ X(at_collected)) (4)

This compliance specification is made over actions in prohibitedActs, speci-
fying that the agent is only allowed to perform pickup with wood when it does
not already have wood in its possession. Though we do not mention pickup in
the specification, it is clear that it is the action pickup that is being prevented;
if the agent is in a cell with a piece of wood, the only way it can transition into
a state where at_collected is true is to pick up that wood.

The optimal behaviour compliant with this specification matches the be-
haviour induced by limiting the agent with the normative supervisor (see Fig. 2(a))
under these same norms.

�(���
�3�

�(���
�3�

�(���
�3�

�(���
�3� �(�� �(��

�)�

�)�

�)��(���
�3�

�(���
�3�

�(���
�3�

�(���
�3�

�)�

(a) (b)

(E) – Extract, (P) – Pickup, (F) – Fight!(E) – Extract, (P) – Pickup, (F) – Fight!

Fig. 2. Compliant journeys for both implementations of the environmentally friendly
merchant.

Notice that the agent still extracts the wood, even though it cannot pick it
up; that is because during training, the agent still gets a small reward, even for
just extracting the wood.

A more complex variant. We assert now that even if the wood is not being
removed from the forest, cutting down trees still counts as deforestation; i.e., we
add a new constitutive norm, C(extract, deforest|at_tree) (at_tree, extract→C

deforest). Additionally, we account for including extract in the action deforest

14 E. A. Neufeld et al.

by adding a new strong permission; if the agent is permitted to pick up wood,
it is also permitted to extract wood: Ps(pickup) → Ps(extract), extending the
earlier strong permission to pickup over this new form of deforestation.

This normative system further complicates the constitutive norms, and presents
the same challenge of a permission being implied by another permission that is
seen in [10]. When we synthesize it, we need to translate the action extract as
well. We take at_tree as the initial condition, and at_wood as the next con-
dition. When we use Algorithms 1 and 2 to synthesize a specification, we get:

G(at_tree ∧ has_wood→ ¬(at_tree ∧X(at_wood))
∧G(at_wood ∧ has_wood→ ¬(at_wood ∧X(at_collected))) (5)

These are again specifications made over actions in prohibitedActs, and serve
to prevent the agent from extracting wood from a tree and picking that wood
up when the agent has wood in its inventory. We can see how they direct the
agent to extract and pick up from only one tree in Fig. 2(b), again matching the
behaviour induced by the normative supervisor.

However, this normative system falls prey to the lack of behavioural guar-
antees discussed in Sect. 3.2; the translation of the action extract with wood as
at_tree ∧ X(at_wood) creates a compliance specification that is too broad. If
we consider the possibility that there could be a cell with wood already present
somewhere in the forest, this specification would prevent us from entering that
cell if it is adjacent to a cell with a tree. In other words, this specification could
result in us prohibiting an action beyond extracting wood from a tree.

4.2 The Pacifist Merchant

This time we require the merchant to be “pacifist”: the agent should avoid dan-
gerous areas, F(at_danger|⊤), but if it is in danger, its response should be to
negotiate, O(negotiate|at_danger). Bribing the bandits during an attack counts
as negotiating, C(unload, negotiate|at_danger).

This normative system contains a contrary-to-duty obligation, and a simple
structure of constitutive norms. The biggest test of the agent’s behaviour will
come when it is forced to enter a dangerous area (will it obey the contrary-to-
duty obligation?), and when it is given the choice to enter danger for a more
rewarding path or go the safe route (will it observe the primary obligation?).

When we synthesize specifications for this normative system with Algo-
rithms 1 and 2, we get several bad states, resulting in the specification:

G(¬at_danger)∧G(¬(at_danger∧has_wood))∧G(¬(at_danger∧has_ore))
∧G(¬(at_danger ∧ has_wood ∧ has_ore))4 (6)

It is clear that this will result in the merchant being unable to leave its home
area because to do so it ends up in a situation where it has no choice but to
enter a dangerous area; clearly, these specifications are too restrictive.
4 Note that this is semantically equivalent to G(¬at_danger)

On Normative Reinforcement Learning via Safe Reinforcement Learning 15

We now turn to weak compliance instead. We remove the primary obligation
(cfr. Prop. 2) and run the synthesis algorithms to get the following specification:

G(at_danger → (¬empty ∧X(empty))

∧G(at_danger ∧ has_wood→ (¬empty ∧X(empty))

∧G(at_danger ∧ has_ore→ (¬empty ∧X(empty))

∧G(at_danger ∧ has_wood ∧ has_ore→ (¬empty ∧X(empty))5 (7)

where ¬empty := has_wood ∨ has_ore, so the initial and next conditions for
unload are ¬empty and empty respectively. We can see that this specification
derived from mandatoryActs does not prevent us from entering the dangerous
areas at all, so the optimal path under these conditions will lead through both
dangerous areas (see Fig. 3(a)).

We implemented this normative system with the normative supervisor, which
instead achieves the desired behaviour (Fig. 3(b)).

�(���
�3�

�)�

�(���
�3�

�)� �(���
�3�

�(���
�3�

�(���
�3�

�(���
�3�

(a) (b)

�8��(���
�3�

�(���
�3�

�(���
�3�

(E) – Extract, (P) – Pickup, (U) – Unload (E) – Extract, (P) – Pickup, (F) – Fight !

Fig. 3. (a) the optimal path the agent can take while adhering to Spec.7. (b) The path
taken by the agent while under the influence of the normative supervisor.

5 Conclusion

We investigated the problem of imposing normative constraints on autonomous
agents that use RL. Since the current state-of-the-art tools limit the practical
integration of normative reasoning into RL, we examined the question of whether
we could achieve this goal by leveraging the well-established machinery for safe
reinforcement learning that uses the safety fragment of LTL. While discussing
the different ways norms could be represented in LTL and their feasibility, we
concluded that compliance specifications in LTL constitute a viable option, gave
algorithms for synthesizing them from normative systems expressed in defeasible
deontic logic, and explored their limitations.

We demonstrated the ability of our approach to synthesise compliance spec-
ifications from normative systems in a case study involving an RL agent playing

5 Note that this is semantically equivalent to G(at_danger → (¬empty ∧X(empty))

16 E. A. Neufeld et al.

a resource-collecting game. A normative system referring to actions with am-
biguous state transitions and another containing a contrary-to-duty obligation
serve to clearly showcase our method’s limitations, supporting our conclusion
that while existing safe RL frameworks based on LTL specifications are capable
of implementing a variety of normative systems, some remain out of reach.

In the future, we hope to mitigate the limitations we have outlined in this
paper using multi-objective RL; by integrating multiple objectives into a sin-
gle policy we could use these techniques to synthesize policies that pursue full
compliance whenever possible, but resort to imposing weak compliance in cases
where the former is unlikely. There exist more expressive logics that may be bet-
ter suited for the subtleties of normative constraints; one example (an extension
of LTL over finite traces) is Linear Dynamic Logic over finite traces (LDLf) [5],
which has been shown to be capable of naturally expressing weak compliance.
It has already been used in conjunction with RL (e.g. in [6]), and we intend to
further explore how such logics can be used for normative RL. Finally, we plan
also to investigate proper mechanisms to incorporate constraints over actions
into the reinforcement learning process.

References

1. Alechina, N., Dastani, M., Logan, B.: Norm specification and verification in multi-
agent systems. Journal of Applied Logics 5(2), 457 (2018)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proc. of AAAI. pp. 2669–2678 (2018)

3. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical normative
systems. In: Proc. of ICAIL. pp. 81–82 (2003)

4. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative
multiagent systems. In: Proc. of KR 2004:. pp. 255–266. AAAI Press (2004)

5. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.,
Soffer, P., Völzer, H. (eds.) Business Process Management. pp. 1–17 (2014)

6. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restrain-
ing bolts: Reinforcement learning with LTLf/LDLf restraining specifications. In:
Proceedings of ICAPS. vol. 29, pp. 128–136 (2019)

7. Esparza, J., Křetínskỳ, J.: From LTL to deterministic automata: A safraless com-
positional approach. In: Proc. of CAV. LNCS, vol. 8559, pp. 192–208 (2014)

8. Forrester, J.W.: Gentle murder, or the adverbial samaritan. The Journal of Phi-
losophy 81(4), 193–197 (1984)

9. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. In: Proc. of RSS (2014)

10. Governatori, G.: Thou shalt is not you will. In: Proc. of ICAIL. pp. 63–68 (2015)
11. Governatori, G.: Practical normative reasoning with defeasible deontic logic. In:

Reasoning Web International Summer School. pp. 1–25. Springer (2018)
12. Governatori, G., Hashmi, M.: No time for compliance. In: Proc. of EDOC. pp.

9–18. IEEE (2015)
13. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in

temporal modal defeasible logic. In: Proc. of AUSAI. pp. 486–496. LNCS (2007)

On Normative Reinforcement Learning via Safe Reinforcement Learning 17

14. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and
weak permissions in defeasible logic. J. of Philosophical Logic 42(6), 799–829 (2013)

15. Governatori, G., Rotolo, A.: BIO logical agents: Norms, beliefs, intentions in defea-
sible logic. Journal of Autonomous Agents and Multi Agent Systems 17(1), 36–69
(2008)

16. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: Proc. of AAMAS. pp. 483–491 (2020)

17. Hodkinson, I., Reynolds, M.: Temporal logic. In: Blackburn, P., Van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, vol. 3, pp. 655–720. Elsevier (2007)

18. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe Reinforcement
Learning Using Probabilistic Shields. In: Proc. of CONCUR. LIPIcs, vol. 171, pp.
3:1–3:16 (2020)

19. Lam, H.P., Governatori, G.: The making of SPINdle. In: Proc. of RuleML. LNCS,
vol. 5858, pp. 315–322 (2009)

20. Neufeld, E., Bartocci, E., Ciabattoni, A., Governatori, G.: A normative supervisor
for reinforcement learning agents. In: Proc. of CADE. pp. 565–576 (2021)

21. Neufeld, E.A., Bartocci, E., Ciabattoni, A., Governatori, G.: Enforcing ethical goals
over reinforcement-learning policies. J. of Ethics and Inform. Techn. (2022)

22. Noothigattu, R., Bouneffouf, D., Mattei, N., Chandra, R., Madan, P., Varshney,
K.R., Campbell, M., Singh, M., Rossi, F.: Teaching AI agents ethical values using
reinforcement learning and policy orchestration. In: Proc. of IJCAI. LNCS, vol.
12158, pp. 217–234 (2019)

23. Panagiotidi, S., Alvarez-Napagao, S., Vázquez-Salceda, J.: Towards the norm-
aware agent: bridging the gap between deontic specifications and practical mecha-
nisms for norm monitoring and norm-aware planning. In: Proc. of COIN@AAMAS.
LNCS, vol. 8386, pp. 346–363 (2013)

24. Pnueli, A.: The temporal logic of programs. In: Proc. of FOCS. pp. 46–57 (1977)
25. Pranger, S., Könighofer, B., Posch, L., Bloem, R.: TEMPEST - synthesis tool for

reactive systems and shields in probabilistic environments. In: Proc. of ATVA.
LNCS, vol. 12971, pp. 222–228 (2021)

26. Rodriguez-Soto, M., Lopez-Sanchez, M., Rodriguez Aguilar, J.A.: Multi-objective
reinforcement learning for designing ethical environments. In: Proc. of IJCAI. pp.
545–551 (2021)

27. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of markov decision processes for linear temporal
logic specifications. In: Proc. of CDC. pp. 1091–1096 (2014)

28. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge,
England: Cambridge University Press (1969)

29. Sickert, S., Esparza, J., Jaax, S., Křetínskỳ, J.: Limit-deterministic büchi automata
for linear temporal logic. In: Proc. of CAV. LNCS, vol. 9780, pp. 312–332 (2016)

30. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College,
Cambridge, UK (1989), http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

31. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. In: Proc. of IROS. pp. 4983–4990. IEEE (2015)

32. Wu, Y.H., Lin, S.D.: A low-cost ethics shaping approach for designing reinforce-
ment learning agents. In: Proc. of AAAI. pp. 1687–1694 (2018)

