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Abstract. We present a logic of agency called LAE whose language
includes propositional constants for actions and expectations. The logic
is based on Von Wright’s theory of agency in general and his analysis of
instrumentality in particular. An axiomatization of the logic, including
an independence of agents axiom, is provided and soundness and com-
pleteness are shown with respect to its intended class of frames. The
framework of LAE will allow us to formally define a manifold of con-
cepts involved in agency theories, including Von Wright’s four elementary
forms of action, the notion of forbearance and notions of instrumentality
that make reference to an agent’s expectations.
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1 Introduction

What do we mean when we ascribe agency to a human being? We most likely as-
sert that this person has the ability to perform an action. This answer highlights
two key aspects of agency: ability and action. A third key aspect of agency is that
actions can be seen in most cases as means to an end; that is, as instruments.
The present work provides a logical framework to reason about the interplay of
these three aspects of agency. While the notions of ability and action have been
formally addressed for the past few decades, the notion of instrumentality seems
to have received minor attention in the literature thus far. Philosophical analy-
ses of instrumentality as such are scarce, although the concept of ‘means to an
end’ is paramount to any theory of agency. Despite these limitations, we believe
that logical investigations around instrumentality should be established on firm
philosophical grounds. The present work aims at providing a formal account of
instrumentality within a framework of agency logic and will be largely based on
ideas presented by Georg Henrik von Wright [13–15], who can be regarded as
one of the founding fathers of the logic of action [2].

Two prominent formal frameworks have been developed for the last few
decades with respect to the logical treatment of agency: stit-logic [4, 10] and
propositional dynamic logic (PDL) [7, 8]. The main difference between the two
approaches can be pinpointed as follows: in stit-logic the focus has been largely
put on the formal treatment of (explicit) agents on the basis of available choices,
whereas in PDL the focus has been put on the formal analysis of (explicit) ac-
tions, regarded as transitions between states. In this article we reconstruct both
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frameworks within a logic including propositional constants for actions and ex-
pectations called LAE (logic of actions and expectations); our contribution is
related to previous proposals that aim either at extending one framework to in-
clude the other, such as [16], or at defining one framework within the other, such
as [9]. Our main purpose is to use LAE in order to provide a formal definition
of various notions of instrumentality that rely on Von Wright’s ideas. Special
attention will be paid to how these notions interact with an agent’s expecta-
tions. The article is divided as follows: in Section 2 we present and elaborate
on Von Wright’s ideas; in Section 3 we introduce the system LAE and prove its
soundness and completeness. Finally, in Section 4, we formally specify the main
notions of the theory of agency and instrumentality at issue.

2 A Theory of Agency and Instrumentality

2.1 Acting

To ‘bring about something’ and to ‘prevent something’ are essential character-
istics of what it is to act. What is brought about is a state of affairs and, for
that reason, to ‘see to it that p’ means that one acts “in such a manner that
the state of affairs that p is the result of one’s action” [13, p.37]. From this ac-
count it follows that acting is strongly related to the emergence of a particular
result (perhaps not always the desired one). An account of action, hence, heavily
depends on the notion of change.

A change is a transition from an initial state to an end-state. These tran-
sitions can be triggered by events in which agents play no role (e.g., a moon
eclipse); however, in many cases they are triggered by an agent’s behaviour. In
particular, an agent may decide to act or not to act in a certain way in a given
circumstance and this behaviour may produce several different results (at least,
in a non-deterministic world). For this reason, we say that an action triggers a set
of possible transitions from an initial state to a set of end-states. To act, then, is
to provoke a specific form of change: it is a change brought about by the interfer-
ence of an agent with the “course of nature” [15, p.36]; one can a posteriori say
that if the agent had not acted, the course of history would have been different.
This is what Von Wright calls the counterfactual element of action [13, p.43].

In order to understand how a result p is related to an action, one also has to
take into account whether p holds or not in the initial state. Indeed, an agent may
bring about p in two ways: either the initial state is ¬p and the agent’s behaviour
changes it to the result p, or the initial state is p and the agent prevents it from
changing to ¬p [15, p.42]. Summing up, the analysis in this section provides
us with three main characteristics of action: i) the initial state, ii) the result
of the agent’s behaviour (i.e., the end-state) and iii) the counterfactual ‘course
of nature’. Taking into account also the difference between p and ¬p as atomic
results, Von Wright classifies four elementary forms of agent behaviour ; the first
two concern actions that ‘bring about’ something, the latter two are actions that
‘prevent’ something from happening [15, p.43-44]:
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– producing p: constructively bringing p into ‘existence’ (figure 1a);1

– destroying p: without the agent’s acting p would have ‘prevailed’ (figure 1b);
– preserving p: if the agent does not act, then p will ‘perish’ (figure 1c);
– suppressing p: if the agent does not act, then p will ‘emerge’ (figure 1d).
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Fig. 1. Von Wright’s four elementary types of action.

2.2 Actions

Up until now we have been talking about ‘acts’ without specification. Com-
monly, a distinction is made between two sorts of actions: actions described in
an impersonal, generic way (e.g. ‘writing’) and concrete, individual instances of
these generic actions, as performed by a particular agent at a particular time
(e.g. ‘I am currently writing’). The former are frequently called ‘action-types’,
whereas the latter can be named ‘action-tokens’. Following Von Wright, generic
actions (i.e., types) can be regarded as ‘categories’ to which individual ‘cases’
(i.e., tokens) belong [15, p. 36].

Here we will generalize this account of actions by considering also negative
actions and complex actions. This will enable us to speak of, for instance, the
action-type ‘not opening the door’ and the action-type ‘not opening the door or
closing the window’. Negative actions are usually not expressible in the language
of propositional dynamic logic, but they are taken into account in other formal
approaches to agency which make explicit reference to actions, such as [2] and [3].
We will regard both action-types and action-tokens as essential to our logic of
agency: As was pointed out in the previous section, an agent’s behaviour at a
particular state triggers a set of possible transitions and, therefore, represents
an action-token. Moreover, as we will clarify in the next section, a proper notion
of instrumentality makes reference to action-types; that is, in order to determine
whether an action is a good instrument for a given purpose, one has to consider
the outcomes of previous transitions triggered by actions of that type.

2.3 Instrumentality

Actions can be regarded as instrument serving a particular purpose; they are
‘means to an end’. For instance, ‘pressing Y on the keyboard’ and ‘pulling the
handbrake of a car’ are respectively instruments to ‘confirm a procedure on a

1 The term used by Von Wright for this behaviour is ‘doing p’. We avoid this expression
because we reserve ‘doing’ for actions, and use ‘producing’ for results.
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computer terminal’ and to ‘perform an emergency stop’. In this section several
distinct forms of instrumentality will be presented that will be formally addressed
in subsequent sections. As a philosophical basis, we will borrow from and extend
Von Wright’s analysis of instrumental goodness, as presented in [14, p.19-40]. To
avoid ambiguity, the term ‘proper instrument’ is here regarded as an appropriate
synonym for ‘good instrument’ and they will be used interchangeably.

Let us call an intended state of affairs φ a purpose and an action ∆ an
instrument. Paraphrasing Von Wright, an action ∆ will qualify as a φ-instrument
if and only if ∆ can serve the purpose φ [14, p.21]. It is also important to
distinguish between instruments that can serve the purpose φ simpliciter and
those that can serve φ well. The former will be called φ-instruments and the
latter proper φ-instruments.

To qualify a particular instrument suitable for a particular purpose, we base
our judgment on past performance; for example, with respect to questions of
instrumentality we often make remarks such as ‘it has worked before’ and ‘it has
never disappointed me (thus far)’. In the first case, we recognize a weak criterion;
that is, the instrument has served the purpose at least once and, for that reason,
it can serve the purpose. In the latter case, we identify a stronger criterion for
instrumentality; that is, there have been applications of the instrument and these
applications have always served the purpose and, for that reason, the instrument
serves the purpose well. Hence, notions of instrumentality are based on past
experience. This experience, subsequently, can be either impersonal or personal
(e.g., ‘this machine has been tested’ or ‘I have used this tool before’). Thus far,
we established two definitions of impersonal instrumentality:

(1) agent-independent basic instrumentality: action-type ∆ is a basic
φ-instrument if and only if ∆ has served the purpose φ at least once in the
past.

(2) agent-independent proper instrumentality: action-type∆ is a proper
φ-instrument if and only if i) ∆ is a basic φ-instrument and ii) ∆ has always
served the purpose φ in the past.

Hence, notions of instrumentality relate to both purpose and past performance.
However, when we judge that ‘these scissors are a proper instrument for me to
cut this piece of paper’, what do we mean? Von Wright briefly remarks that
“judgments of instrumental goodness, usually, even if not necessarily, contain
a conjectural element” [14, p.27]. In other words, practical statements about
instrumentality also contain reference to expectations about the instrument’s
future performance. Hence, agent-bound instrumentality is based on both i) the
past performance of particular action-tokens associated with a certain type and
ii) the expected continuation of this performance in the nearby future. In contrast
to agent-independent statements of instrumentality, statements of this form will
vary over agents. What is more, the conjectural element of expected performance
does not guarantee any future result: the agent might simply be wrong [14, p.27].
The fact that the instrument has served the purpose well in the past, does not
guarantee that it will not fail in the future. In our formal framework we will
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strongly emphasize these fundamental aspects of agent-bound instrumentality
by investigating different notions of instrumentality that are restricted by the
agent’s expectations.

Lastly, we emphasize that expectations must be regarded as those future mo-
ments which the agent considers more likely to happen. An agent’s expectations
about the nearby future are therefore a subset of all possible next moments. We
will accordingly introduce a formal restriction on expectations in section 3.2

From the above we derive two agent-bound definitions of instrumentality:

(3) agent-bound basic instrumentality: An instrument ∆ is a basic φ-
instrument for agent α at momentm if and only if i)∆ is a basic φ-instrument
and ii) α expects that ∆ will serve φ at m.

(4) agent-bound proper instrumentality: An instrument ∆ is a proper
φ-instrument for agent α at moment m if and only if i) ∆ is a proper φ-
instrument and ii) α expects that ∆ will serve φ at m.

The agent-independent and agent-dependent notions of instrumentality (1)-(4)
will be formally addressed in section 4.

In passing, ability can be regarded as an abstract form of agentive instru-
mentality; namely, saying that ‘an agent is able to behave in a certain way which
guarantees a result’ is an abstraction of saying that ‘there exists an instrument
(action) which the agent can successfully employ to obtain that result’. More-
over, saying that an agent α is able to obtain φ through an action ∆, given that
∆ has always led α to φ in the past, is essentially the same as saying that α
excels at performing ∆ to obtain φ. In this sense, Von Wright’s concept of abil-
ity, ‘being good at something’, is strongly related to our concept of agent-bound
proper instrumentality (cf. the analysis of ‘technical goodness’ as ability and
skill in [14, p.32-39]).

3 The system LAE

We start our formal presentation with a boolean algebra of actions and subse-
quently introduce the language of the logic LAE, in which the performance of
an action by an agent will be represented by a formula. Let Action = {δ1, ..., δn}
be a finite set of atomic action-types. The set Action∗ of complex action-types
is defined by the following BNF:

∆ ::= δi|∆ ∪∆|∆

where δi ∈ Action. The operations ∪ and — are respectively used to form
disjunctions of action-types (e.g., ‘turning-left or turning-right’) and negations
of action-types (e.g., ‘not turning-right’). If Agent = {α1, ..., αm} is a finite
set of agent constants, an agent-bound action-type is an expression of kind

2 We want to stress that the term ‘expectation’ must not be regarded as an epistemic
notion, such as knowledge. Although an agent can have expectations about the
future, the agent might still have imperfect knowledge of these expected future states.
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∆αi , where ∆ ∈ Action∗ and αi ∈ Agent. Let V ar = {p1, p2, p3, ...} be a
countable set of propositional variables; furthermore, for any αi ∈ Agent, let
Witαi = {dαi1 , ..., dαin } be a set of propositional constants respectively witnessing
the performance of the atomic action-types δ1, ..., δn by αi and let eαi be a
propositional constant witnessing the compatibility of a state with αi’s expec-
tations.3 Notice that |Witαi | = |Action| = n. The set

⋃
αi∈AgentWitαi can be

simply denoted by Wit. The language L is defined by the following BNF:

φ ::= pi|eαj |d
αj
i |¬φ|φ→ φ|�φ|Nφ

for any pi ∈ V ar, αj ∈ Agent and d
αj
i ∈Wit. We can read �φ as ‘in all successor

states φ is the case’ and Nφ as ‘in the actual successor state φ is the case’.
We use standard definitions for additional boolean and modal operators. For
instance, ♦φ abbreviates ¬�¬φ and means ‘in some successor state φ is the case’.
Expressions like eαj and d

αj
i mean respectively ‘the most recent expectations of

agent αj are met’ and ‘agent αj has just performed action δi’. The set of atomic
propositional symbols in L is Atom = V ar ∪Wit ∪ {eαj : αj ∈ Agent}.

Let t be a translation function mapping agent-bound action-types to formulas
of L as below:

– for any δi ∈ Action and αj ∈ Agent, t(δ
αj
i ) = d

αj
i ,

– for any ∆ ∈ Action∗ and αi ∈ Agent, t(∆αi) = ¬t(∆αi);

– for any ∆,Γ ∈ Action∗ and αi, αj ∈ Agent, t(∆αi ∪Γαj ) = t(∆αi)∨ t(Γαj ).

Let LAE be the system specified below:

A0 if φ is a propositional tautology, then `LAE φ;

R0 φ, φ→ ψ `LAE ψ;

A1 �(φ→ ψ)→ (�φ→ �ψ);

R1 if `LAE φ, then `LAE �φ;

A2 N(φ→ ψ)→ (Nφ→ Nψ);

A3 ¬Nφ→ N¬φ;

A4 �φ→ Nφ;

A5 for any list of (distinct) α1, ..., αn ∈ Agent and list of (non-necessarily dis-
tinct) ∆1, ...,∆n ∈ Action∗,
(♦t(∆α1

1 ) ∧ ... ∧ ♦t(∆αn
n ))→ ♦(t(∆α1

1 ) ∧ ... ∧ t(∆αn
n ));

A6 for any αj ∈ Agent, ♦eαj → ♦¬eαj .

The most relevant axioms of the system S are A3, which guarantees that every
state has a unique successor, A4, which says that the actual successor of a state
is within the set of its successors, A5, which represents the stit-logic principle
known as independence of agents, and A6, which ensures that agents never expect
all possible future state-of-affairs to happen (if at a given state there are successor
states satisfying an agent’s expectations, then there are also successor states not

3 The use of propositional constants in modal logic can be traced back at least to [1].
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satisfying the expectations).4 The semantics for LAE will clarify that none of
these axioms implies that a state has successors. Thus, the system can be used
to reason about scenarios in which there are final possible states. Furthermore, it
is noteworthy that the principle of ‘independence of agents’ is compatible with a
scenario in which an agent ends in a state that does not meet that agent’s (most
recent) expectations.

We define the following additional operators:

E1 for any ∆ ∈ Action∗ and αi ∈ Agent,
[∆αi ]wouldφ =def �(t(∆αi)→ φ);

E2 for any ∆ ∈ Action∗ and αi ∈ Agent,
[∆αi ]couldφ =def �(t(∆αi)→ φ) ∧ ♦t(∆αi);

E3 for any ∆ ∈ Action∗ and αi ∈ Agent,
[∆αi ]willφ =def �(t(∆αi)→ φ) ∧ ¬N¬t(∆αi).

We can read the formula [∆αi ]wouldφ as ‘at the current state, by behaving in ac-
cordance with ∆, αi would bring about φ’. (Notice that this does not ensure that
αi is currently able to behave in accordance with ∆.) The formula [∆αi ]couldφ
means ‘at the current state, by behaving in accordance with ∆, αi would bring
about φ and αi could (i.e., is able to) behave in accordance with ∆’. Finally, the
formula [∆αi ]willφ means ‘at the current state, by behaving in accordance with
∆, αi would bring about φ and αi will actually behave in accordance with ∆’.

A relational frame to interpret the language L is an ordered tuple F =
〈W, {W

d
αj
i

: d
αj
i ∈ L}, {Weαj : eαj ∈ L}, R,RN 〉, where W = {w1, w2, w3, ...}

is a set of states, each W
d
αj
i

and each Weαj is a subset of W and R and RN are

binary relations over W . The relation R captures the idea of a transition from
a state to one of its immediate successors. As we pointed out in Section 2, a
transition can be triggered by any event and so it does not require, in general,
an active interference of an agent. The relation RN represents transitions in
the course of events that can be considered actual with respect to a given state;
namely, we have wRNu only if u is an immediate successor of w and belongs to
the actual future of w. Thus, the notion of actual future is state-dependent. This
allows one to reason about the actual future of counterfactual states as well.5

A relational model to interpret L is an ordered tuple M = 〈F, V 〉 where F is a
relational frame and V is a valuation function which maps atomic propositional
symbols to sets of states and satisfies the following conditions:

4 The ‘independence of agents’ axiom is central to stit-logic; it ensures that when
choices are made simultaneously, an agent cannot a priori limit the choices available
to the others; see e.g. [4, p.217-218]. Axiom A6 allows for the possibility that an
agent has contradictory expectations about the future which cannot be realized.

5 For instance, suppose that at w it started raining and I decided to take a walk
without bringing an umbrella with me. Thus, I am in a state w′ such that in the
future of w′ I will very likely get wet; however, had I decided to bring an umbrella
with me at w, I would have ended in a state w′′ such that in the future of w′′ I
would not have got wet. Therefore, one can also say that in the actual future of the
counterfactual state w′′ I would not have got wet.
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– V (d
αj
i ) = W

d
αj
i

, for any d
αj
i ∈ L;

– V (eαj ) = Weαj , for any eαj ∈ L.

Thus, propositional constants have the same interpretation in all models over a
frame. Formulas of L are evaluated at a state of a model in the customary way.
Truth-conditions are defined as follows:

– M, w � χ iff w ∈ V (χ), for any χ ∈ Atom;
– M, w � ¬φ iff M, w 2 φ;
– M, w � φ→ ψ iff M, w 2 φ or M, w � ψ;
– M, w � �φ iff for all v ∈W s.t. wRv we have M, v � φ;
– M, w � Nφ iff for all v ∈W s.t. wRNv, we have M, v � φ.

Let F, w � φ mean that M, w � φ for all models M over the frame F. The notion
of validity of a formula with respect to (w.r.t.) a model, a frame, a class of models
and a class of frames is defined in the standard way. Finally, for a given formula
φ ∈ L, let ||φ||M = {w ∈ W : M, w � φ} and ||φ||F = {w ∈ W : F, w � φ}. Due
to the fixed interpretation of propositional constants and the definition of the
translation function t, we have that, given a frame F and an arbitrary model M
over it:

– ||t(∆αi)||F = ||t(∆αi)||M, for any ∆ ∈ Action∗ and any αi ∈ Agent.

Let Cf be the class of all frames satisfying the following properties:

p(A3) for all w ∈ W , if there is u ∈ W s.t. wRNu, then for all v ∈ W s.t. wRNv,
we have v = u;

p(A4) for all w, v ∈W , if wRNv, then wRv;
p(A5) for all w ∈ W and for all lists of distinct agents α1, ..., αn, if there are

(non-necessarily distinct) action-types ∆1, ...,∆n s.t. for 1 ≤ i ≤ n there is
ui ∈ W s.t. wRui and ui ∈ ||t(∆αi

i )||F, then there is v ∈ W s.t. wRv and
v ∈ ||t(∆α1

1 )||F ∩ ... ∩ ||t(∆αn
n )||F;

p(A6) for all w ∈ W and αj ∈ Agent, if there is v ∈ W s.t. wRv and v ∈ ||eαj ||F,
then there is also u ∈W s.t. wRu and u /∈ ||eαj ||F.

The class Cf is non-empty. Indeed, the following is a very simple frame belonging
to it: F = 〈W, {W

d
αj
i

: d
αj
i ∈ L}, {Weαj : eαj ∈ L}, R,RN 〉, where W = {w1, w2},

W
d
αj
i

= {w2} for any d
αj
i ∈ L, Weαj = ∅ for any eαj ∈ L and R = RN =

{(w1, w2)}. It is straightforward to verify that p(A3)-p(A6) are satisfied by F.

Theorem 1. The system LAE is sound w.r.t. the class Cf .

Proof. Axioms A0, A1 and A2 are valid in all relational frames and rules R0 and
R1 preserve validity in all relational frames. In the case of A3, take an arbitrary
frame F ∈ Cf and a model M over it. Assume M, w � ¬Nφ for some w ∈ W ;
from this we can infer that there is v ∈W s.t. wRNv and M, v � ¬φ; by p(A3),
it follows that for all u ∈ W s.t. wRNu, u = v. Therefore, M, w � N¬φ. In the
case of A4, assume M, w � �φ; then, for all v ∈ W s.t. wRv we have M, v � φ.
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By p(A4), we can infer that for all u ∈W s.t. wRNu we have M, u � φ. Hence,
M, w � Nφ. In the case of A5, let, for some distinct α1, ..., αn ∈ Agent and some
(non-necessarily distinct) ∆1, ...,∆n ∈ Action∗, M, w � ♦t(∆α1

1 )∧ ...∧♦t(∆αn
n ).

From this we can infer that there are (non-necessarily distinct) v1, ..., vn ∈ W
s.t., for 1 ≤ i ≤ n, wRvi and vi ∈ ||t(∆αi

i )||F. By p(A5), we can infer that
there is u ∈ W s.t. wRu and u ∈ ||t(∆α1

1 )||F ∩ ... ∩ ||t(∆αn
n )||F. Hence, M, w �

♦(t(∆α1
1 )∧ ...∧t(∆αn

n )). In the case of A6, assume M, w � ♦eαj for some eαj ∈ L.
Then, there is v ∈W s.t. wRv and M, v � eαj . By p(A6), we can infer that there
is u ∈W s.t. wRu and M, u � ¬eαj ; hence, M, w � ♦¬eαj .

Let FLAE be the canonical frame for LAE, defined as follows:

– WLAE is the set of all maximally LAE-consistent sets of formulas;
– for any w, v ∈WLAE , wRLAEv iff {φ : �φ ∈ w} ⊆ v;
– for any w, v ∈WLAE , wRLAEN v iff {φ : Nφ ∈ w} ⊆ v;
– for any d

αj
i ∈ L, WLAE

d
αj
i

= {w ∈WLAE : d
αj
i ∈ w};

– for any eαj ∈ L, WLAE
eαj = {w ∈WLAE : eαj ∈ w}.

The canonical model for LAE, denoted by MLAE , is obtained by adding a
valuation function V LAE s.t.:

– for any χ ∈ Atom, V LAE(χ) = {w ∈WLAE : χ ∈ w}.

Any alternative valuation function V on the canonical frame must satisfy the
aforementioned restrictions on propositional constants (namely, V (d

αj
i ) = WLAE

d
αj
i

,

etc.). By usual properties of canonical models, for any formula φ ∈ L and any
state w ∈WLAE , we have MLAE , w � φ iff φ ∈ w.

The following theorem illustrates some properties of the frame FLAE .

Theorem 2. Let RLAE∆αi be a binary relation over WLAE s.t., for any w, v ∈
WLAE, wRLAE∆αi v iff {φ : [∆αi ]wouldφ ∈ w} ⊆ v; we show some of the properties
of this relation:

I) RLAE∆αi ⊆ RLAE;
II) RLAE∆αi∪Γαj = RLAE∆αi ∪RLAEΓαj ;

III) RLAE
∆αi

= RLAE ∩RLAE∆αi .

Proof. Let w be an arbitrary world in the canonical model of LAE.

I) Assume wRLAE∆αi v; then, {φ : [∆αi ]wouldφ ∈ w} ⊆ v. Furthermore, let ¬(wRLAEv);
then there is �ψ ∈ w s.t. ψ /∈ v. From this and ordinary modal reasoning it fol-
lows that �(t(∆αi)→ ψ) ∈ w and [∆αi ]wouldψ ∈ w, so ψ ∈ v, which represents
a contradiction.

II) Assume wRLAE∆αi∪Γαj v. Then, {φ : [∆αi ∪ Γαj ]wouldφ ∈ w} ⊆ v, which
entails {φ : �((t(∆αi) ∨ t(Γαj )) → φ) ∈ w} ⊆ v and {φ : �(t(∆αi) →
φ) ∧ �(t(Γαj ) → φ) ∈ w} ⊆ v, so {φ : [∆αi ]wouldφ ∧ [Γαj ]wouldφ) ∈ w} ⊆ v.
Suppose ¬(wRLAE∆αi ∪ RLAEΓαj v); then, there are [∆αi ]wouldψ, [Γαj ]wouldχ ∈ w s.t.
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ψ, χ /∈ v. From this it follows that �(t(∆αi) → ψ),�(t(Γαj ) → χ) ∈ w. Since
�(t(∆αi) → (t(∆αi) ∨ t(Γαj ))) ∧ �(t(Γαj ) → (t(∆αi) ∨ t(Γαj ))) ∈ w, then
t(∆αi)∨ t(Γαj ) ∈ v, which means that either t(∆αi) ∈ v or t(Γαj ) ∈ v. Since we
know that wRLAE∆αi∪Γαj v entails wRLAEv, then {φ : �φ ∈ w} ⊆ v. This means
that if t(∆αi) ∈ v, then ψ ∈ v; if t(Γαj ) ∈ v, then χ ∈ v. A contradiction arises
in both cases.

Assume ¬(wRLAE∆αi∪Γαj v); then, there is [∆αi ∪ Γαj ]wouldψ ∈ w s.t. ψ /∈ v.
Therefore, �((t(∆αi) ∨ t(Γαj )) → ψ) ∈ w. Suppose wRLAEv (otherwise the
intended result trivially follows); then, since �(¬ψ → ¬(t(∆αi) ∨ t(Γαj ))) ∈ w,
then ¬(t(∆αi)∨t(Γαj )) ∈ v, whence ¬t(∆αi),¬t(Γαj ) ∈ v, so {φ : [∆αi ]wouldφ ∈
w} * v and {φ : [Γαj ]wouldφ ∈ w} * v, hence ¬(wRLAE∆αi ∪RLAEΓαj v).

III) Let wRLAE
∆αi

v; then, {φ : [∆αi ]wouldφ ∈ w} ⊆ v; we know that from this

it is possible to infer wRLAEv. Since [∆αi ]wouldt(∆αi), [∆αi ]would¬t(∆αi) ∈ w,

then ¬t(∆αi) ∈ v and t(∆αi) /∈ v, so ¬(wRLAE∆αi v), which is wRLAE∆αi v, and

wRLAE ∩RLAE∆αi v.
Let ¬(wRLAE

∆αi
v); then, there is [∆αi ]wouldψ ∈ w s.t. ψ /∈ v. Assume wRLAEv;

since �(¬t(∆αi) → ψ) ∈ w, then ¬t(∆αi) → ψ ∈ v, so t(∆αi) ∈ v. Let
[∆αi ]wouldχ ∈ w; then, �(t(∆αi)→ χ) ∈ w and χ ∈ v; thus, {φ : [∆αi ]wouldφ ∈
w} ⊆ v, which means wRLAE∆αi v and ¬(wRLAE ∩RLAE∆αi v).

Theorem 3. The frame FLAE belongs to the class Cf .

Proof. We need to show that FLAE satisfies the properties p(A3)–p(A6). In the
case of p(A3), suppose wRLAEN v, wRLAEN u and v 6= u. Then, there is φ s.t. φ ∈ v
and φ /∈ u. In the canonical model MLAE we have MLAE , v � φ and MLAE , u �
¬φ, so MLAE , w � ¬Nφ and, by A3, MLAE , w � N¬φ, which entails MLAE , v �
¬φ, whence φ,¬φ ∈ v: contradiction. In the case of p(A4), suppose that wRLAEN v
and ¬wRLAEv. Then there is �φ ∈ w s.t. φ /∈ v; however, by A4, Nφ ∈ w and
this entails ¬wRLAEN v: contradiction. In the case of p(A5), suppose that for a list
of distinct agents α1, ..., αn and for a list of (non-necessarily distinct) action-types
∆1, ...,∆n, we have that there are (non-necessarily distinct) worlds u1, ..., un
s.t., for 1 ≤ i ≤ n, wRLAEui and ui ∈ ||t(∆αi

i )||F. Then, w ∈ ||♦t(∆α1
1 )||F ∩

... ∩ ||♦t(∆αn
n )||F, which entails ♦t(∆α1

1 ) ∧ ... ∧ ♦t(∆αn
n ) ∈ w and, by A4, we

get ♦(t(∆α1
1 ) ∧ ... ∧ t(∆αn

n )) ∈ w. Assume that there is no maximally LAE-
consistent set v s.t. {φ : �φ ∈ w} ∪ {(t(∆α1

1 ) ∧ ... ∧ t(∆αn
n )) ⊆ v; then, `LAE

(φ1 ∧ ... ∧ φm) → ¬(t(∆α1
1 ) ∧ ... ∧ t(∆αn

n )) for some φ1, ..., φm ∈ {φ : �φ ∈ w}.
From this one can infer `LAE �(φ1 ∧ ... ∧ φm)→ �¬(t(∆α1

1 ) ∧ ... ∧ t(∆αn
n )), so

`LAE (♦t(∆α1
1 ) ∧ ... ∧ ♦t(∆αn

n ) ∧�(φ1 ∧ ... ∧ φm))→ ¬♦(t(∆α1
1 ) ∧ ... ∧ t(∆αn

n ));
however, this is impossible since we know that `LAE (♦t(∆α1

1 )∧ ...∧♦t(∆αn
n ))→

♦(t(∆α1
1 )∧ ...∧t(∆αn

n )). Hence, we can conclude that there is a maximally LAE-
consistent set v s.t. wRLAEv and v ∈ ||(t(∆α1

1 )||F ∩ ...∩ ||t(∆αn
n ))||F. In the case

of p(A6), assume that wRLAEv and v ∈ ||eαi ||F for some eαi ∈ L; then, suppose
that the set {φ : �φ ∈ w} ∪ {¬eαi} is not LAE-consistent. From this one can
infer that `LAE �(φ1 ∧ ... ∧ φn) → ¬♦¬eαi for some φ1, ..., φn ∈ {φ : �φ ∈ w};
hence, `LAE (�(φ1 ∧ ... ∧ φn) ∧ ♦eαi) → ¬♦¬eαi , which contradicts A6. Then,
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there is a maximally LAE-consistent set u s.t. {φ : �φ ∈ w}∪{¬eαi} ⊆ u, which
means u ∈ ||¬eαi ||F and wRLAEu.

An immediate consequence of Theorem 3 is that LAE is complete w.r.t. the class
Cf ; hence, together with Theorem 1, this entails that LAE is characterized by
the class Cf . Furthermore, as a consequence of Theorem 2 and Theorem 3, the
following schemata, which capture the properties of a boolean algebra of action-
types, are provable in LAE: 6

T1 [∆αi ∪ Γαj ]wouldφ ≡ [Γαj ∪∆αi ]wouldφ;
T2 [∆αi ∪ (Γαj ∪Σαk)]wouldφ ≡ [(∆αi ∪ Γαj ) ∪Σαk ]wouldφ;

T3 [∆αi ∪ Γαj ∪∆αi ∪ Γαj ]wouldφ ≡ [∆αi ]wouldφ.

We will now show that the system LAE is also characterized by a subclass of
Cf that includes only tree-like frames which resemble more familiar structures
used in the literature for logics of agency, in particular, diverse stit-logics (e.g.
[4, 6, 10, 16]). A branching-time frame with immediate successors is an ordered
tuple F = 〈T, {T

d
αj
i

: d
αj
i ∈ L}, {Teαj : eαj ∈ L}, <〉 where T = {m1,m2,m3, ...}

is a set of moments, each T
d
αj
i

and each Teαj is a subset of T and < is a binary

asymmetric, intransitive and backward linear relation over T , namely:

– ∀m,m′ ∈ T : (m < m′ → ¬(m′ < m));
– ∀m,m′,m′′ ∈ T : ((m < m′ ∧m′ < m′′)→ ¬(m < m′′));
– ∀m,m′,m′′ ∈ T : (m′ < m ∧m′′ < m)→ m′ = m′′.

We define the usual machinery related to branching-time frames. Let � be
the transitive closure of <; then, T is partially ordered by� and any�-maximal
chain of moments can be called a history. Let H be the set of histories in a given
branching-time frame F and Hm = {h ∈ H : m ∈ h} the set of all histories in
F ‘passing through’ a moment m. A model over a branching-time frame with
immediate successors is an ordered tuple M = 〈F, V 〉, where F is the underly-
ing frame and V a valuation function mapping atomic propositional symbols to
moments and satisfying the usual restrictions on propositional constants.7 For-
mulas of L are in this case evaluated with reference to a moment/history pair
in a model.8 Let actual be a function which associates to a moment m the only
successor of m (if any) which belongs to the actual future of m, then:9

– M, (m/h) � χ iff m ∈ V (χ), for any χ ∈ V ar;
6 Future work can be devoted to extensions of the language of LAE including operators

for concatenations and iterations of action-types, in the spirit of [7, 8].
7 In the context of ‘next moment’ agency logic there is no need to assign atomic

symbols to moment/history pairs, as observed in [6].
8 Reference to histories provides a general framework suitable to express more complex

notions related to indeterminism; for instance, one could add to the language of LAE
an operator saying that something will always hold in one history passing through
a given moment. Such an operator is not definable in terms of � in infinite trees.

9 Notice that, by definition, actual can be a partial function (a moment may have no
actual successor even if an agent expects it to have some) and has some remarkable
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– M, (m/h) � ¬φ iff M, (m/h) 2 φ;
– M, (m/h) � φ→ ψ iff M, (m/h) 2 φ or M, (m/h) � ψ;
– M, (m/h) � �φ iff for all m′ ∈ T s.t. m < m′ and all h′ ∈ Hm′ we have

M, (m′/h′) � φ;
– M, (m/h) � Nφ iff M, (actual(m)/h′) � φ for all h′ ∈ Hactual(m).

Notice that according to the definition of actual(m), if m has no actual successor,
then M, (m/h) � Nφ for every φ ∈ L. In order to formally specify a class of
branching time frames with immediate successors contained in Cf , we define the
relations R and RN in terms of moment/history pairs and the relation <, as
follows:

– (m/h)R(m′/h′) iff m < m′, h ∈ Hm and h′ ∈ Hm′ ;
– (m/h)RN (m′/h′) iff m′ = actual(m), h ∈ Hm and h′ ∈ Hm′ .

The last two semantic clauses are then respectively equivalent to:

– M, (m/h) � �φ iff for all (m′/h′) s.t. (m/h)R(m′/h′), M, (m′/h′) � φ;
– M, (m/h) � Nφ iff for all (m′/h′) s.t. (m/h)RN (m′/h′), M, (m′/h′) � φ.

Let us say that a branching-time frame with immediate successors is an lae-
frame iff it satisfies the properties p(A3)-p(A6). The class of all lae-frames can
be denoted by Claef ; clearly, Claef ⊂ Cf . In order to claim that LAE is also

characterized by Claef , one needs to show that the additional properties of lae-
frames cannot be forced by any formula of the language L. But this follows from
well-known results concerning the correspondence theory of propositional modal
languages. We sketch the proof below, relying on notions illustrated in [5].

Theorem 4. For any φ ∈ L, if Claef � φ, then Cf � φ.

Proof. By contraposition, assume that φ is not valid in some model M over a
frame F in Cf . This means that for some world w∗ in the domain of M, we have
M, w∗ � ¬φ. Let M′ be the submodel of M generated by w∗; then M′, w∗ � ¬φ.
M′ can be transformed into a model Mt over an asymmetric, intransitive tree
Ft rooted in w∗, whose set of states W t consists of the sequences 〈w1, ..., wn〉
s.t. w1, ..., wn ∈ W ′, w1 = w∗ and w1R

′w2, ..., wn−1R
′wn (W ′ and R′ being

respectively the domain and the accessibility relation associated with � in M′)
and whose relations Rt and RtN are defined as follows:

– for any u, v∈W t, uRtv iff u=〈w1, ..., wn〉, v=〈w1, ..., wn, wn+1〉 and wnR
′wn+1;

difference with the ‘thin red line’ function of the stit-logic literature [4]; indeed,
the thin red line function assigns to each moment m a unique history to which m
belongs (the actual history w.r.t. m), whereas actual assigns to m only its actual
successor, if the latter exists. This solves some objections raised in [4] against the
use of functions to represent actuality in branching-time; for instance, while there
are problems of ‘thin red line inheritance’ among states related by <, there is no
problem of ‘actual successor inheritance’, since any two states related by < have
different actual successors (if any).
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– for any u, v∈W t, uRtNv iff u=〈w1, ..., wn〉, v=〈w1, ..., wn, wn+1〉 and wnR
′
Nwn+1.

Let Π be a function from W ′ to ℘(W t) s.t. Π(u) = {〈w1, ..., wn〉 : wn = u}; then,
for all u ∈W ′ and all ψ ∈ L we have M′, u � ψ iff Mt, x � ψ for every x ∈ Π(u).
Therefore, since Π(w∗) = {w∗}, we get Mt, w∗ � ¬φ. Finally, let Ht be the
set of histories in Mt; transform Mt into a model Mfin obtained by replacing
every state u ∈ W t with a state u∼ = {(w/h) : u ∈ Π(w) and h ∈ Ht

u}. Define
a binary relation <fin over W fin s.t. u∼ <fin v∼ iff uRtv; it follows that, for
all u∼ ∈ W fin, Hfin

u∼ = Ht
u. Let Rfin and RfinN be defined in terms of <fin as

in branching-time frames with immediate successors, where actual(w∼) = w′∼
iff wRtNw

′. Mfin is a model over an lae-frame by construction. It can be easily
proved that for all u ∈W t and all ψ ∈ L, we have Mt, u � ψ iff Mfin, (w/h) � ψ
for every (w/h) ∈ u∼ iff Mfin, u∼ � ψ, hence Mfin, w∗∼ � ¬φ.

We conclude with some theorems of LAE involving the operators in E1−E3:

T4 ([∆α1
1 ]couldφ1∧ ...∧ [∆αn

n ]couldφn)→ [∆α1
1 ∩ ...∩∆αn

n ]could(φ1∧ ...∧φn), where
α1,...,αn are distinct;

T5 [∆αi ]couldφ→ ¬[∆αi ]could¬φ;
T6 [∆αi ]willφ→ ¬[∆αi ]will¬φ;
T7 [∆αi ]willφ→ [∆αi ]couldφ;
T8 [∆αi ]couldφ→ [∆αi ]wouldφ.

T4 expresses the familiar ‘independence of agents’ principle in its agency ap-
pearance; T4 equivalents for ‘will’ and ‘would’ are also provable in LAE. T5
and T6 express that the defined operators for ‘could’ and ‘will’ behave in ac-
cordance with seriality. Clearly, we do not have a T5 equivalent for ‘would’. T7
and T8 are bridge-theorems that express the relations between ‘will’, ‘could’ and
‘would’. Finally, notice that the operators in E1-E3 can be modified by taking
into account also agents’ expectations, as illustrated below:

– M, (m/h) � [∆αi ]wouldex φ iff M, (m/h) � �((t(∆αi) ∧ eαi)→ φ);
– M, (m/h) � [∆αi ]couldex φ iff M, (m/h) � �((t(∆αi) ∧ eαi)→ φ) and

M, (m/h) � ♦(t(∆αi) ∧ eαi);
– M, (m/h) � [∆αi ]willex φ iff M, (m/h) � �((t(∆αi) ∧ eαi)→ φ) and

M, (actual(m)/h′) � t(∆αi) ∧ eαi for all h′ ∈ Hactual(m).

4 Discussion and Final Remarks

Performing actions. Several concepts pertaining to the theory of agency in-
troduced in this paper can be formally specified within the syntactical and se-
mantic framework of the logic LAE. Recall (Section 2) that, by making reference
to initial states, end-states, and counterfactual states, Von Wright derives four
elementary forms of action: producing, destroying, preserving and suppressing.
Although a formal approach to these terms is not new (cf. [2,11]), the logic LAE
allows us to expand them to more complex notions interacting with actions, ex-
pectations, instrumentality and ability:
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(a) m/h |= [∆αi ]prodp iff m/h |= ¬p and m/h |= [∆αi ]willp and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′|=¬p

(b) m/h |= [∆αi ]destrp iff m/h |= p and m/h |= [∆αi ]will¬p and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

(c) m/h |= [∆αi ]presp iff m/h |= p and m/h |= [∆αi ]willp and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′|=¬p

(d) m/h |= [∆αi ]suppp iff m/h |= ¬p and m/h |= [∆αi ]will¬p and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

The above formulae allow us to make explicit reference to the instruments that
lead to producing, destroying, preserving and suppressing p, respectively. (No-
tice that (a)-(d) refer to atomic results.) We provide the intuitive reading of (a),
the others will be similar: ‘at the current state, by behaving in accordance with
∆, αi produces p’ means that ‘(i) ¬p is currently the case; (ii) α actually behaves
in accordance with ∆; (iii) p will actually be the case immediately after and (iv)
¬p could otherwise be the case immediately after’.

Von Wright’s reading of the four actions is stronger than ours, since he rep-
resents them in a binary setting : through agent α’s conduct p will be the case,
whereas through α’s not-acting ¬p would be the case. We believe that this ac-
count is too strong: it gives the agent α complete power over the faith of p.
Definitions (a)-(d), instead, exemplify that α has the capability of determin-
ing the faith of p with some behaviour ∆, but cannot determine the faith of p
through not acting.

Furthermore, observe that in our framework we can also redefine these four
elementary actions in terms of could and would, as well as with reference to an
agent’s expectations. For the sake of discussion, we only provide the definition
of ‘agent α could destroy p by behaving in accordance with ∆’:

(-) m/h |= [∆αi ]coulddestrp iff m/h |= p and m/h |= [∆αi ]could¬p and
∃m′, ∃h′∈Hm′ s.t. m<m′ and m′/h′ |= p

Definitions (a)-(d) entail that propositions true at every next state, can nei-
ther be brought about nor prevented by any agent. Such definitions can therefore
be seen as strong notions of deliberative action (cf. ‘dstit’ in [10]). This result
brings us to the concept of forbearance (omission). Following Von Wright [15,
p.45], to forbear is stronger than to merely not act. In fact, it presupposes the
ability to perform what is forborne. We introduce the following definition:

(e) m/h |= [∆αi ]forb> iff m/h |= [∆αi ]could> and m/h |= [∆
αi

]will>

Forbearance explicitly refers to actions: the usage of > (i.e., ‘tautology’) in (e)
refers to the possibility to behave in accordance with action ∆ and is interpreted
as ‘agent α forbears to behave in accordance with ∆’ if and only if ‘α could be-
have in accordance with ∆, but will behave in accordance with ∆ instead’.

Definitions (a)-(e) can be easily extended to formal notions of forbearance
relating to results. We only illustrate the notion of ‘forbearing to destroy p’:
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(-) m/h |= [∆αi ]forbdestrp iff m/h |= p and m/h |= [∆αi ]could¬p and

m/h |= [∆
αi

]will> and ∃m′, ∃h′∈Hm′ s.t.
m<m′ and m′/h′ |= p

Instrumentality. In Section 2 we made a distinction between weak and strong
concepts of instrumentality, as well as agent-independent and agent-bound con-
cepts. We will now provide their formalizations in the framework of LAE:

basic instrumentality
(f) m/h |= [∆]b−instrφ iff ∃m′ s.t. m′ � m and for some αi∈Agent we

have m′/h |= [∆αi ]willφ

proper instrumentality
(g) m/h |= [∆]p−instrφ iff i) m/h |= [∆]b−instrφ and ii) ∀m′,∀h′ s.t.

m′ � m and h′∈Hm′ and for all αi∈Agent
we have m′/h′ |= [∆αi ]wouldφ

basic α-instrumentality
(h) m/h |= [∆αi ]b−instrex φ iff i) m/h |= [∆αi ]couldex φ and ii) ∃m′ s.t. m′ � m

and m′/h |= [∆αi ]willφ

proper α-instrumentality
(i) m/h |= [∆αi ]p−instrex φ iff i) m/h |= [∆αi ]b−instrex φ and

ii) ∀m′,∀h′ s.t. m′ � m and h′∈Hm′ we have
m′/h′ |= [∆αi ]wouldφ

Definitions (f) and (g) employ the will -operator to ensure that, in the past, φ
has been the actual result of behaviour in accordance with ∆ and not just the
result of lucky coincidence. Furthermore, (f) and (g) express instrumentality in-
dependent of past expectations. Moreover, (g) requires that, everywhere in the
past, behaviour in accordance with ∆ would have led to φ.

Definitions (h) and (i), instead, introduce respectively weak and strong agent-
bound notions of instrumentality, the difference with the former two is that
(h) and (i) consist of both future expectations and past experience: the agent
expects the continuation of the instrument’s past performance. We don’t limit
past experience to past expectations since an agent might discover concrete rules
of instrumentality through the experience of unexpected results and actions.
Observe that agent-bound instrumentality is defined through all three terms
‘could’, ‘will’ and ‘would’, relating respectively to ‘the present state’, ‘a past
state’ and ‘all past states’. Lastly, we emphasize that all formal definitions (f)-
(i) allow for the agent to be disenchanted; that is, even proper-instruments might
presently fail to lead to the intended result and agents might end in a state in
which their expectations are not met.

In conclusion, taking both agent-dependent expectations and actions as the
basis of our logic of agency we were able to construct three different notions of
agency: would, could and will, each with its corresponding expectation-variant.
Together, these concepts were sufficient to address several extensions of Von
Wright’s elementary actions, including forbearance, as well as several formal
definitions of instrumentality. As a final remark, we mention that both the pro-
cess of generalizing actions and deriving notions of instrumentality are associated
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with induction and, for that reason, with the problems that come with it. Here,
we only accentuate that the above formalization is in line with Von Wright’s
division of the problem of induction into two distinct problems [12]. First, there
is the problem of justifying whether generalized statements are true for all ob-
served cases (i.e., with respect to the past). This part is formally represented by
defition (g). Secondly, there is the problem of using these generalized statements
for future predictions. Von Wright remarks that here we seem to be satisfied with
something less stringent: “Scarcely anybody would pretend that predictions, even
when based upon the safest inductions, might not fail sometimes” [12, p.51]. The
latter is captured through the formal behaviour of expectations in LAE and the
first clauses of definitions (h) and (i).
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